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Abstract—Clock skew scheduling (CSS) is a well-known technique
that improves design timing slack by adjusting clock latency to flip-
flops. CSS requires obtaining timing path information between sequential
elements (including flip-flops and I/O ports), known as sequential graph
extraction, which is the most time-consuming part of advanced CSS.
In this paper, to quickly identify the potential of clock skew in slack
optimization, we propose an iterative CSS algorithm that leverages timing
propagation to facilitate sequential graph extraction. Then, we provide
a comprehensive skew calculation method that considers multiple clock
latency constraints, obtaining the target latency of each flip-flop. Finally,
we present slack optimization techniques to achieve the target latencies.
Our algorithm achieves a 49.11× speedup compared to the advanced
CSS algorithm based on partial graph extraction, reducing 90.05% of
the extracted edges. Compared to a state-of-the-art CSS-based slack
optimization methodology, our algorithm delivers a 27.01× speedup with
superior slack improvement.

I. INTRODUCTION

Slack improvement is critical for achieving timing closure, and clock
skew scheduling (CSS) is a well-known technique that enhances
design timing slack by adjusting clock latency to flip-flops [1], also
called useful skew optimization. Previously, Chan et al. proposed
NOLO (“no-loop”) [2], which applied CSS during post-synthesis to
determine predictive skew. This predictive skew facilitated slack opti-
mization, reducing runtime by 66% and improving total negative slack
(TNS) by 5%. Similarly, Kim et al. [3] introduced the Fast Predictive
Useful Skew Methodology (FPM), which applied CSS to compute
predictive skew during placement, leading to significant speedups
and improvements in negative slack. These findings highlight the
significant potential of CSS in slack optimization.

In fact, CSS has been well-studied [4] [5] [6] [7]. Graph-based
CSS [8] is the dominant approach, which uses a parametric shortest
path algorithm to find the maximum mean weight cycle (MMWC).
The time complexity of the MMWC solution has been proven as
O(nm+n2 logn), where n and m represent the vertices and edges of
the sequential graph1, respectively. In practice, the MMWC solution
achieves significant timing slack improvements and is currently the
standard approach for useful skew optimization in commercial EDA
tools [2]. However, Albrecht [9] noted that the runtime required to
compute the MMWC is negligible compared to the time required
to extract the sequential graph from the gate-level timing graph2.
Consequently, Albrecht [9] first introduced incremental clock skew
scheduling (IC-CSS), demonstrating that extracting only 20% of the
edges in the sequential graph is sufficient to identify the maximum
mean cycle, reducing overall runtime to 5.8%. Subsequently, Wang
[10] extended the MMWC solution for slack optimization and pro-
posed an effective cycle-handling method. Notably, Wang continued
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1Sequential graph: a directed graph with flip-flops or I/O ports as vertices
and timing paths as edges.

2Gate-level timing graph: a graph used in timing propagation, where vertices
represent gates or pins, and edges represent timing arcs or nets.

Fig. 1: Default clock skew scheduling flow: (i) Sequential graph
extraction, (ii) Clock skew scheduling on the sequential graph. -
Inspiring acceleration by leveraging timing propagation.

to employ the same edge extraction method as IC-CSS, and the
runtime reported in the study does not account for the time spent
on edge extraction.

Despite advancements in CSS and efforts in IC-CSS, two chal-
lenges remain. First, we observe that the sequential graph extraction
in IC-CSS still retrieves many non-essential edges, indicating that the
extraction runtime can be further optimized. Section III provides the
details on this issue. Second, no further studies have explored CSS
under clock latency constraints. In fact, considering these constraints
inevitably requires extracting additional sequential edges, and solving
for the MMWC under such conditions may not always be feasible.

Fig. 1 illustrates the key challenges in CSS that our work aims
to address. Recently, many static timing analysis (STA) timers have
been open-sourced [11] [12] [13], enabling researchers to utilize these
timers effectively for slack optimization. Additionally, significant
progress has been made in accelerating timers [14] [15] [16] [17]
[18]. Since the sequential graph is a subgraph of the gate-level timing
graph, this motivates the use of timing propagation to improve CSS.

In this work, to quickly identify the potential for useful skew in
slack optimization, we propose an iterative clock skew scheduling
algorithm with dynamic sequential graph extraction inspired by
timing propagation. The key contributions are summarized as follows.

• We propose a fast iterative clock skew scheduling algorithm that
extracts only the essential sequential graph for skew calculation.

• We design a comprehensive skew calculation method based on
the essential sequential graph, guaranteeing slack enhancement
in each iteration while considering multiple latency constraints.

• We apply reconnection and cell movement techniques to achieve
the desired latency.

• Compared to the modified IC-CSS method, our iterative sequen-
tial graph extraction reduces the search for essential edges and
achieves a shorter runtime. Compared to state-of-the-art CSS-



based slack optimization methodologies, we achieve notable
runtime reductions and improved slack.

II. SLACK IMPROVEMENT VIA CLOCK SKEW SCHEDULING

A. Problem Formulation
There are two types of timing slack: early slack and late slack.

sEu,v = lu − lv + tc2qu − tc2qv + dmin
u,v − tholdv (1)

sLu,v = lv − lu + T − tc2qu − dmax
u,v − tsetupv (2)

Here, sEu,v and sLu,v represent the early and late slack on the timing
path from u to v, lu and lv denote clock latencies, tc2qu and tc2qv are
the clock-to-Q delays, dmin

u,v and dmax
u,v represent the minimum and

maximum path delays, T is the given clock period, tholdv and tsetupv

are the hold time and setup time of the flip-flop node v.
Focusing on evaluating and applying CSS to incremental slack

optimization, we treat all variables in Eq. (1) and Eq. (2), except
clock latencies, as constants. The relationship between slack variation
and clock latencies is expressed as follows:

∆sEu,v = (lu − lv), ∆sLu,v = (lv − lu) (3)

In the following discussion, we use (lv − lu) to represent the skew
increment for the flip-flop node from u to v.

Define a slack sequence s = {s1, s2, . . . , s2n} that includes all
early and late slack variables, where n is the number of timing paths.
The sequence s is defined to satisfy the following conditions:

• The slack variables are in non-decreasing order, expressed as
s1 ≤ s2 ≤ · · · ≤ s2n.

• When slack > 0, set slack = 0.
We impose constraints of all edges E′ on clock skew:

lu − sLu,v ≤ lv, and lu + sEu,v ≥ lv, ∀eu,v ∈ E′ (4)

We impose constraints on the upper and lower bounds of latency:

lmin
v ≤ lv ≤ lmax

v , ∀v ∈ V (5)

Our slack optimization problem consists of finding a solution of
Eq. (4) and Eq. (5) such that the sequence s is lexicographically
maximal. For example, between s = {−5,−4,−2} and s′ =
{−5,−3,−3}, we say s′ is greater than s because their second
elements differ (−3 > −4). Since only s < 0 requires optimization,
it is also referred to as the negative slack optimization (NSO) problem
of clock skew scheduling.

Then, we construct a directed sequential graph instance G =
(V,E′, w) for our CSS problem. Here, V consists of all flip-flop
nodes along with two supernodes representing the input and output
ports. The timing paths between all nodes form the edge set E′ of G,
and w represents the edge weights, which correspond to the negative
slacks. We direct the late edges from the launch flip-flop to the receive
flip-flop, assigning the late slack sL as the edge weight w. Conversely,
we direct early edges from the receive flip-flop back to the launch
flip-flop, using the early slack sE as the edge weight w. By setting
the edges in different directions, we incorporate ∆sEu,v and ∆sLu,v
from Eq. (3) into graph G. Finally, we define the weight of each
vertex in graph G.

wout
u = min

eu,v∈E′
wu,v, ∀u ∈ V (6)

To clarify skew calculation, we define the concept of an arbores-
cence and its associated properties. An arborescence is characterized
by the following properties: It is a directed acyclic graph, and except
for the root vertex, which has no incoming edges, every other vertex
has exactly one incoming edge.

We refer to the path from the root to a node of the arborescence
as a path and define functions for the vertices along it.

α(v) =
∑

eu,v∈Proot→v

wu,v, and β(v) = |Proot→v| (7)

where Proot→v is the path from root to vertex v.

B. Preliminaries of Incremental Clock Skew Scheudling
By extracting only partial edges from the sequential graph, Albrecht
[9] achieves incremental clock skew scheduling (IC-CSS), signifi-
cantly reducing runtime. The key to partial sequential graph extraction
is that IC-CSS calculates the maximum delay of outgoing timing
paths only once, denoted as dout. When a node u satisfies Eq. (8),
it is considered as a critical vertex and has potential critical edges in
the outgoing direction:

lu + doutu − T ≥ 0 (8)

where lu is the latency increment and T is the period variable defined
in IC-CSS. Since the goal of IC-CSS is to find the minimum period
T , it iteratively reduces T . When a critical vertex u satisfying Eq. (8)
is identified, it invokes a call-back mechanism to extract all outgoing
edges of u. The algorithm terminates when encountering a cycle,
which is also referred to as the maximum mean cycle. As not all
vertices are critical and do not need their outgoing edges retrieved, IC-
CSS completes clock skew scheduling using only a partial sequential
graph. We refer to the T-variable updates and latency calculations in
IC-CSS as shown in Eq. (9).

T = α(v)/β(v), and lv = α(v)− β(v) · T (9)

The detailed process is provided in Alg. 2 of [9].

III. OUR ALGORITHM

A. Exploring Further Acceleration on Sequential Graph Extraction
IC-CSS demonstrates that minimizing the cycle period in CSS does
not require extracting the complete sequential graph. To maintain the
global minimum cycle period, IC-CSS must extract all outgoing edges
for critical vertices to find MMWC, as discussed in Section II-B.
Many of these outgoing edges remain unused, presenting opportuni-
ties for further acceleration. Moreover, IC-CSS does not incorporate
a CSS method under latency constraints, which can impact the
identification of the MMWC and require extracting additional edges.

To rapidly solve the proposed NSO problem using clock skew,
we circumvent the need to maintain the MMWC, which enables
faster batch extraction of all essential sequential edges. Since the
STA timer quickly identifies negative (essential) edges in a sequential
graph, which corresponds to reporting timing slack violations, we
use it to extract and update essential sequential edges. Updating
essential edges is achieved by first controlling the clock latency of
flip-flops, followed by timing propagation. Next, we further explain
the iterative process of extracting a sequential graph and the method
for calculating skew within the partial sequential graph, considering
latency constraints.

B. Iterative Sequential Graph Construction
If an edge in the sequential graph consistently satisfies s ≥ 0, it does
not require CSS for negative slack optimization. Such edges can be
omitted from extraction, thereby reducing runtime. We refer to edges
required for skew optimization as Essential Edges, while the others
are classified as Non-Essential Edges.

Fig. 2 shows the core idea of our iterative sequential graph extrac-
tion, compared to the sequential graph extraction approach used in
IC-CSS. As observed in Fig. 2, the call-back mechanism of IC-CSS
extracts many non-essential edges. To extract only essential edges for
CSS, we utilize an STA timer to track changes in essential edges and
extract them in each iteration, a process known as the Update-Extract
Mechanism. We propose a comprehensive process as follows:

i. Extract the partial sequential graph of essential edges.
ii. Generate multiple arborescences based on the partial sequential

graph and perform skew calculation.
iii. Add the clock latency values from skew calculation to corre-

sponding flip-flop nodes, perform timing propagation, and repeat
the iterative sequential graph construction process.



Fig. 2: Comparison of incremental sequential graph extraction from [9] and our iterative sequential graph extraction.

Fig. 3: A snapshot from the iterative sequential graph construction
process. The dashed box highlights the vertices that need processing:
adding virtual endpoint connections or addressing a cycle.

Finally, we demonstrate that the proposed algorithm reduces the time
complexity of sequential graph extraction from nm′ to km′, where n
is the number of vertices, m′ is the number of nets in the gate-level
timing graph, and k is the number of iterations. Generally, k is much
smaller than n.

1) Update-Extract Mechanism
We propose the Update-Extract Mechanism to iteratively extract

the sequential graph, which is crucial for avoiding the extraction of
non-essential edges. It first updates all computed clock latency values
for the clock inputs of the selected flip-flops, followed by timing
propagation to update the slack for the relevant timing paths. Finally,
the violation timing paths will be extracted as essential edges. In
practice, we focus on the newly violated timing endpoints to minimize
redundant searches for essential edges and identify new essential
edges from these endpoints. The update method for the remaining
essential edges is shown in Eq. (10).

wk+1
u,v = wk

u,v + (lkv − lku), ∀eu,v ∈ E′ (10)

where wk
u,v represents edge weight in the k-th iteration, and (lkv− lku)

is the skew increment of the k-th iteration.
2) Iterative Sequential Graph Update Process
Fig. 3 shows a snapshot from the iterative sequential graph con-

struction process. In each iteration, we construct a virtual endpoint
for specific vertices, which are used in the skew calculation dis-
cussed in Section III-C2. After the update and extract process, the
sequential graph construction for the next iteration can result in two
scenarios: first, new essential edges are generated; second, a cycle
is encountered, as shown in Fig. 3 with the example “u → v →
z → u”. The existence of a cycle indicates that it is impossible to

eliminate the negative slack of all edges within the cycle through skew
adjustments. And the negative slack improvement in the cycle C is up
to wavg

C = (wu,v + wv,z + wz,u)/3. According to Eq. (9), treating
wavg

C as T and rewriting lv = β(v) · T − α(v), we can calculate
the clock latency for all vertices within the cycle C. After setting
the clock latency values, we fix them within the cycle, update the
timing propagation, and refrain from arranging clock latency to the
vertices within the cycle afterward. Finally, we define the termination
condition for the algorithm’s iteration as the lack of new latency
increments across all vertices, indicated by wk+1

u,v = wk
u,v in Eq. (10).

C. Skew Calculation on Partial Sequential Graph

Based on Eq. (3), skew represents the latency difference between two
flip-flops. Since skew calculation is performed on an arborescence, we
set the root latency to zero as the baseline. The latencies of other flip-
flops in the arborescence are calculated relative to the baseline. In this
section, we will first introduce the constraints on latency, then propose
a method for constructing a non-negative latency arborescence, and
finally present the complete process for calculating latency.

1) Clock Latency Constraints
Similar to IC-CSS, we set all latencies to be non-negative. During

the algorithm’s iterative process, we gradually increase the latency of
the flip-flops until the final upper bound is reached. The upper bound
of latency is constrained by two factors: first, encountering the cycle
illustrated in Section III-B2, indicating that further slack optimization
is no longer possible. Second, latency cannot arise from another type
of slack (for example, not introducing new early violations while
optimizing late violations).

According to Eq. (3), in CSS, the late slack increment and early
slack increment are mutually constrained. In the following discussion,
we focus on late slack optimization, as the case for early slack
is analogous. As illustrated in Fig. 4, when there is a late timing

Fig. 4: Increasing clock latency for late slack improvement may
introduce new early slack violations.

violation in the timing path from flip-flop u to flip-flop v, we can
improve the slack by increasing the clock latency lv at the clock input
of flip-flop v. According to Eq. (1), increasing lv may lead to new
early violation paths with vin as the timing path endpoint. Therefore,
the increase in lv is limited by an upper bound ŝEv .

ŝEv = max{0, sEv } (11)



Fig. 5: Latency calculation on a non-decreasing arborescence.

where sEv is the minimum early slack among all timing paths
with v as the endpoint. Notably, during clock skew scheduling,
sEv varies dynamically as latency changes. Generally, during clock
skew scheduling, all early paths ending at v must be extracted to
ensure the upper bound ŝEv is not violated. However, our algorithm
performs timing propagation in each iteration, during which the timer
updates sEv . In other words, our algorithm update the latency upper
bound ŝEv for node v without extracting its early paths, as shown
in Eq. (11). This is another key factor enabling our algorithm to
minimize sequential edge extraction.

2) Construction of Non-Negative Latency Arborescence
In IC-CSS, the arborescence is constructed using the parametric

shortest path algorithm. Since the parametric shortest path algorithm
is not the focus of this paper, we do not provide additional details
here. The detailed process of arborescence generation can be referred
to the Algorithm 1 in [9]. After constructing the arborescence, we
calculate latencies based on its structure. We claim that if the edge
weights of an arborescence A are non-decreasing from the root to the
leaf nodes, the latencies of all vertices on A satisfy lu ≥ 0, ∀u ∈ A.
Instead of a formal proof, we illustrate this with the example in Fig. 5.
In this figure, the edge weights are increasing, and the calculations of
α and β follow Eq. (7). The average terminal weight, wavg

end, is first
computed, after which the latency of each vertex is calculated using
the formula lmax

u = β(u) ·wavg
end −α(u), u ∈ A. For example, the

latency of node z is lz = 2 · (−2)− (−8) = +4. The same method
applies to nodes u and v. As a result, the latencies of all nodes satisfy
lu ≥ 0, ∀u ∈ A. To ensure a non-decreasing arborescence, it suffices
to enforce wu,v < wout

v when adding edge eu,v to the arborescence.
3) Clock Latency Calculation by Two-pass Traversal
To ensure that the allocated clock latency for the target ver-

tices remains within the established bounds while maximizing slack
improvement, we propose a two-pass traversal method for latency
calculation. In the first pass, a reverse topological traversal determines
the maximum allowable latency for each vertex. In the second pass,
a topological traversal computes the actual latency values.

For each vertex u, we introduce wavg
u , which considers the maxi-

mum allowable latency of its successor vertices:

wavg
u = max

{u,v}∈E
{α(u) + wu,v + lmax

v

β(u) + 1
} (12)

Using wavg
u , the maximum allowable latency lmax

u is calculated as:

lmax
u = β(u) · wavg

u − α(u) (13)

Additionally, lmax
u can be utilized to enforce the latency upper bound

(a) (b)

Fig. 6: An example of two-pass traversal for latency calculation.

Algorithm 1 Our Iterative Clock Skew Scheduling

Input: The gate-level timing graph Gt; The sequential graph G =
(V,E,w), E and w is given implictly by Gt.

Output: The target latency l∗v for each node v ∈ V
1: Initialize Target Latency l∗v = 0 (∀v ∈ V ), Arborescences A,

k = 0
2: repeat
3: Gk ← (V, extract edges(Gt), w) [Section III-B1]
4: A ← Non-Negative Construction [Section III-C2]
5: if exist cycle C in A then
6: lkv ← Cycle Latency Calculation [Section III-B2]
7: l∗v = l∗v + lkv
8: Update Timing & Continue
9: end if

10: lkv ∈ V ← Two-Pass Calculation [Section III-C3]
11: l∗v = l∗v + lkv
12: Update Timing & (k = k + 1)
13: until lkv = 0, ∀v ∈ V
14: return l∗v

constraints outlined in Section III-C1. Finally, the actual latency lv
is scheduled in topological order:

lv = min{lmax
v , lu − wu,v} (14)

To illustrate the latency calculation process, we refer to Fig. 6. In
Fig. 6(a), the traversal begins from a virtual end node. The lmax

end for
all virtual vertices is set to 0. Since virtual vertices lack outgoing
edges, wavg

end is therefore 0. The traversal continues, calculating up to
vertex e using Eq. (12) and Eq. (13). For example, when calculating
from vertex e to c, we find: wavg

e = (−5)+(−3)+6
1+1

= −1. Similarly,
for the edge from e to f : wavg

e = (−5)+(−1)+2
1+1

= −2. The value
wavg

e = −2 is then used to calculate lmax
e . For the edge eb,c,

even though vertices b and c belong to different arborescences, the
calculation method remains consistent. Ultimately, all {lmax, wavg}
pairs are determined for latency calculation according to Eq. (14), as
shown in Fig. 6(b). Notably, vertex b requires only a latency of +3
to resolve the timing violation on edge ea,b.

D. Algorithm and Analysis
Alg. 1 presents the complete process of iterative clock skew schedul-
ing. After initializing the necessary variables (Line 1), the algorithm
extracts essential edges to construct the sequential graph G0 for
the first iteration (Line 3). Note that we use the function ex-
tract edges(Gt) to invoke the timer for essential edge extraction.
It then constructs the non-negative latency arborescences for skew
calculation (Line 4). When a cycle C occurs in the arborescence,
the algorithm calculates and records the latencies in that cycle (Lines
5-8). It then fixes the latency on C and reconstructs the sequential
graph. Otherwise, it performs the two-pass latency calculation (Line
10). The algorithm records each iteration’s target latency l∗ (Lines
7,11). After finishing the clock skew scheduling, it puts the latency to
each flip-flop and performs timing propagation for the next iteration
(Lines 8,12). Finally, if all latencies are equal to zero, indicating no
further slack improvement, the algorithm records k and returns all
the target latencies.

IC-CSS extracts the outgoing edges for the critical vertices, po-
tentially giving a time complexity up to O(nm′), where n is the
number of flip-flops, and m′ is the number of nets in the gate-level
timing graph. Our algorithm performs timing propagation at each
iteration. Therefore, the final time complexity for our sequential graph
extraction is O(km′), where k is the number of iterations. Generally,
k is much smaller than n. The significant reduction in time for our
sequential graph extraction is primarily due to two factors: first, the
absence of MMWC identification; and second, our focus on searching
only essential edges during iterations.



E. The Modified Incremental Clock Skew Scheduling

We adapt and extend the IC-CSS algorithm from [9] to address the
same NSO problem as our proposed algorithm, with modifications to
satisfy latency constraints in clock skew scheduling. The following
three functionalities are modified:

i. Termination Condition Adjustment: The termination condition
of the IC-CSS algorithm is replaced with the cycle latency
calculation method described in Section III-B2. The algorithm
continues generating arborescences after processing the cycle.

ii. Latency Constraint Edge Extraction: We introduce functionality
to extract latency constraint edges, as outlined in the extension
of [9]. When the IC-CSS algorithm adds a critical edge eu,v to
the arborescence, it computes the latency lv for vertex v and
compares it with ŝEv (or ŝLv for early improvement), as defined
in Section III-C1. If lv > ŝEv , it triggers a callback mechanism
to extract all constraint edges associated with vertex v.

iii. Latency Calculation Update: The latency calculation in IC-CSS
is replaced with the approach described in Section III-C3. For
each arborescence generated by IC-CSS, latencies are computed,
and edge weights are updated according to Eq. (10). Subse-
quently, the ŝEv values for all vertices are refreshed. This process
iterates until no further latency increments are possible.

We refer to the modified version of the IC-CSS algorithm as IC-CSS+.

IV. SLACK OPTIMIZATION TECHNIQUES

In this section, we introduce two slack optimization techniques: LCB-
FF reconnection and cell movement.

A. LCB-FF Reconnection

As shown in Fig. 7(a), we introduce a flip-flop reconnection technique
to local clock buffers (LCBs) to effectively increase clock latency.
Alg. 1 provides the target latency l∗ for flip-flops. Accordingly, the
objective of LCB-FF reconnection can be formulated as:

min |lv − l∗v| (15)

where lv represents the actual latency of vertex v. However, we
observed that when an LCB is connected to multiple flip-flops
located far apart, it can result in uncontrollable Clock Pessimism Path
Reduction (CPPR) issues. We should mitigate the negative impact on
the steiner tree topology caused by reconnecting an LCB to multiple
flip-flops. Therefore, we prohibit reconnection for two types of LCBs:
first, when the LCB’s fanout has reached its maximum limit, and
second, when the LCB has already undergone reconnection. We start
flip-flop reconnection in descending order of l∗v values, using the
Elmore delay model to convert l∗v into target distance Dist∗v .

Dist∗v = Elmore(l∗v) (16)

We then define the number of candidates and select LCBs for the
candidate set from the distance matrix in descending order based on
Dist∗v . Notice that we maintain a distance matrix between the flip-
flops that require reconnection and all LCBs during initialization.
Finally, the reconnection cost is computed based on Eq. (15). In
practice, we incorporate the negative impact on other flip-flops into
the reconnection cost.

B. Cell Movement to Refine Early Violations

As shown in Fig. 7(b), we employ cell movement refinement to mit-
igate newly generated early violations. We first identify all movable
cells along the early violation path and attempt to shift each cell
in the north, south, east, and west directions. After each move, we
perform a local timing update. If a cell achieves a longer arrival
time for early slack improvement, further movement of that cell is
halted. The cell movement distance is centered around the current
position, starting at 0.1 times the maximum displacement constraint
and gradually increasing until the maximum displacement is reached.

(a) (b)

Fig. 7: The proposed slack optimization techniques: (a) LCB-FF
reconnection and (b) Cell movement for early violations.

V. EXPERIMENTAL RESULTS

Our CSS algorithm and slack optimization techniques are imple-
mented in C++11 and executed on an Intel(R) Xeon(R) Gold 5218
CPU @ 2.30GHz with 64GB of RAM. Timing propagation and
essential edge extraction are conducted using the open-source timer
described in [13]. The evaluation dataset is derived from the ICCAD
2015 contest benchmark [19], with detailed information summa-
rized in TABLE I. To demonstrate the effectiveness of clock skew
scheduling for slack improvement, we utilize the first-place result
of the ICCAD 2015 contest as the input for our incremental timing
optimization. Notably, we adhere to the constraint that each LCB can
connect to a maximum of 50 flip-flops. All results are evaluated using
the official ICCAD 2015 evaluator, and no violations of the contest
constraints are observed in our experimental results. We divide our
slack optimization process into two stages: early slack optimization
under late slack constraints, followed by late slack optimization under
early slack constraints.

TABLE I presents the comprehensive early/late worst negative
slack (WNS) and total negative slack (TNS), runtime details including
clock skew scheduling (CSS), slack optimization (OPT), the number
of extracted edges, and the increase in HPWL. For early optimization
alone, our algorithm (Ours-Early) achieves a 22.74% further improve-
ment in WNS and a 7.22% in TNS compared to the Fast Predictive
Useful Skew Methodology (FPM), with a 27.01× speedup over FPM,
accompanied by a negligible increase in HPWL.

In the complete slack optimization task, our algorithm and the
Modified Incremental Clock Skew Scheduling algorithm (IC-CSS+)
achieve an 87.5% improvement in early WNS and approximately 88%
improvement in early TNS compared to the baseline (Contest 1st).
For late optimization, both achieve a 2.02% improvement in WNS
and approximately 12.3% improvement in TNS. During the clock
skew scheduling phase, our proposed iterative clock skew scheduling
method is 49.11× faster, as it reduces the extraction of essential
edges by 90.05%. Even after applying the same slack optimization
phase, our proposed slack improvement method still achieves an
11.83× speedup. Experimental results demonstrate that clock skew
scheduling can be accomplished with significantly less sequential
graph information, enabling a rapid evaluation of the potential of
clock skew for negative slack optimization.

According to TABLE I, our algorithm eliminates all early viola-
tions except for superblue7, which demonstrates its effectiveness.
Furthermore, we report runtime information for Ours-Early. The
results indicate that CSS is completed within a few seconds, since
only a small number of edges are extracted. The runtime bottleneck
is primarily due to the OPT phase. These findings highlight the
efficiency of our algorithm in clock skew scheduling and underscore
the potential of useful skew for optimizing negative slack.

As shown in Fig. 8, we present the iterative process of our algo-
rithm on superblue18. The algorithm first performs early clock skew



TABLE I: Comparison of the Fast Predictive Useful Skew Methodology (FPM) [3], the Modify Incremental Clock Skew Scheduling (IC-CSS+)
based on [9], and our algorithm. Since FPM only optimizes for the early violations, we introduce Ours-Early for a fair comparison. The runtime
of FPM is reconstructed based on Figure 7(b) in [3]. Similar to our algorithm, IC-CSS+ conducts comprehensive optimization for both early
and late violations. All algorithms use the Contest 1st results as input.

Benchmark Statistics
Solution

Early(ps) Late(ns) Runtime(s) #Extract Edge HPWL
Incr(%)#Cells #FFs #LCBs WNS TNS WNS TNS CSS OPT Total

superblue1 1.21M 144K 7.2K

Contest 1st -16.65 -80.89 -4.57 -351.23 — — — — —
FPM [3] -0.43 -0.43 -4.57 -351.21 — — 495 — 0.0003

Ours-Early 0 0 -4.57 -351.23 1.75 22.36 24.11 32 0.0016
IC-CSS+ 0 0 -4.51 -316.94 1335.73 114.38 1450.11 3212965 0.1619

Ours 0 0 -4.51 -316.95 7.47 97.52 104.99 81002 0.1576

superblue3 1.21M 168K 8.4K

Contest 1st -13.13 -214.03 -8.71 -1160.04 — — — — —
FPM [3] -5.54 -29.05 -8.70 -1160.07 — — 1330 — 0.0046

Ours-Early 0 0 -8.71 -1160.20 2.18 21.52 23.7 77 0.0101
IC-CSS+ 0 0 -8.44 -1107.61 249.11 118.59 367.7 384685 0.2626

Ours 0 0 -8.44 -1107.63 7.05 106.32 113.37 21769 0.2635

superblue4 796K 177K 8.8K

Contest 1st -12.28 -53.84 -5.76 -2464.56 — — — — —
FPM [3] 0 0 -5.76 -2462.93 — — 358 — 0.0006

Ours-Early 0 0 -5.76 -2464.53 2.39 12.99 15.38 47 0.0017
IC-CSS+ 0 0 -5.76 -2222.36 2512.37 158.22 2670.59 4524898 1.7098

Ours 0 0 -5.76 -2223.34 92.68 125.55 218.23 802408 1.6994

superblue5 1.09M 114K 5.7K

Contest 1st -36.77 -618.27 -24.29 -5842.23 — — — — —
FPM [3] -36.77 -268.60 -24.29 -5842.28 — — 755 — 0.0038

Ours-Early 0 0 -24.29 -5842.23 2.85 23.93 26.78 177 0.0096
IC-CSS+ 0 0 -24.29 -5065.66 2645.23 220.94 2866.17 8918052 1.7802

Ours 0 0 -24.29 -5066.23 20.31 240.92 261.23 30380 1.7831

superblue7 1.93M 270K 13.5K

Contest 1st -6.75 -1958.34 -15.22 -1510.76 — — — — —
FPM [3] -6.38 -1858.48 -15.21 -1510.79 — — 1237 — 0.0008

Ours-Early -6.75 -1872.18 -15.22 -1510.69 3.35 61.91 65.26 449 0.0023
IC-CSS+ -6.75 -1870.91 -15.22 -1387.73 803.96 232.11 1036.07 502292 0.5069

Ours -6.75 -1874.54 -15.22 -1388.43 31.73 227.50 259.23 5610 0.5084

superblue10 1.88M 241K 12.1K

Contest 1st -5.15 -373.75 -16.08 -31517.8 — — — — —
FPM [3] -2.20 -3.47 -16.07 -31518.0 — — 1049 — 0.0010

Ours-Early 0 0 -16.08 -31518.1 3.19 37.10 40.29 220 0.0060
IC-CSS+ 0 0 -15.83 -29449.7 11006.17 411.93 11418.1 15481826 3.5442

Ours 0 0 -15.83 -29448.8 202.55 378.89 581.44 2395607 3.5442

superblue16 982K 143K 7.1K

Contest 1st -7.55 -37.64 -3.85 -265.57 — — — — —
FPM [3] 0 0 -3.84 -265.57 — — 430 — 0.0006

Ours-Early 0 0 -3.85 -265.57 1.28 13.53 14.81 25 0.0005
IC-CSS+ 0 0 -3.49 -181.98 212.93 100.00 312.93 429939 0.4397

Ours 0 0 -3.49 -182.94 7.00 89.01 96.01 4147 0.4412

superblue18 768K 104K 5.2K

Contest 1st -1.95 -6.86 -3.82 -775.84 — — — — —
FPM [3] 0 0 -3.81 -775.87 — — 301 — 0.0015

Ours-Early 0 0 -3.82 -775.84 0.91 9.24 10.15 11 0.0006
IC-CSS+ 0 0 -3.78 -659.27 182.88 72.19 255.07 347689 0.8218

Ours 0 0 -3.78 -659.24 15.17 72.60 87.77 22508 0.8221

Avg. Ratio (Based on 1st)

FPM [3] +64.76% +80.83% +0.06% +0.01% — — +744.38s — -0.0017%
Ours-Early +87.50% +88.05% +0.00% +0.00% +2.24s +25.32s +27.56s +130 -0.0041%
IC-CSS+ +87.50% +88.06% +2.02% +12.33% +2368.55s +178.54s +2547.09s +4225293 -1.1534%

Ours +87.50% +88.03% +2.02% +12.27% +47.99s +167.29s +215.28s +420429 -1.1524%

Avg. Improvement
FPM [3] +22.74% +7.22% -0.06% -0.01% — — 27.01× — -0.0024%
IC-CSS+ +0.00% -0.03% +0.00% -0.06% 49.11× 1.04× 11.83× -90.05% +0.001%

scheduling, followed by early slack optimization using the LCB-FF
reconnection and cell movement techniques. Similarly, the algorithm
carries out late slack optimization. To enhance stability, a portion of
early violations is amplified during early slack optimization. Notably,
the first round of late clock skew scheduling reveals a significant slack
improvement, indicating that substantial skew is available on adjacent
paths to help resolve timing violations.

VI. CONCLUSION

In this paper, we address the negative slack improvement problem
through a fast, iterative clock skew scheduling algorithm. This method
rapidly evaluates the potential for slack improvement and uses the
calculated latencies to guide slack optimization techniques, thereby
achieving significant timing improvements and runtime reduction.
Furthermore, our algorithm supports controlling flip-flop clock la-
tency constraints, enabling customized clock skew scheduling. Fast
clock skew scheduling enables the incorporation of useful skew
considerations into the EDA physical design flow. In future work,
we plan to apply our algorithm to open-source flows to guide clock
tree synthesis and integrate it with logic path optimization.

Fig. 8: Slack optimization iterations of superblue18.
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