
An Efficient Parallel Fault Simulator for Functional
Patterns on Multi-core Systems

Xiaoze Lin1,2,3, Liyang Lai4, Huawei Li1,3, Biwei Xie1,2, Xingquan Li2

1State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
2Pengcheng Laboratory, Shenzhen, Guangdong, China

3University of Chinese Academy of Sciences, Beijing, China
4Electrical Engineering, Shantou University, Shantou, Guangdong, China

Abstract—Fault simulation targeting functional patterns
emerges as an essential mechanism within functional safety, crucial
for validating the effectiveness of safety mechanisms. The accel-
eration of fault simulation for functional patterns is imperative
for boosting the efficiency and adaptability of functional safety
verification, presenting a significant yet unresolved challenge. In
the paper, we propose an efficient fault simulator for functional
patterns, utilizing three techniques including fault filtering, fault
grouping, and CPU-based parallelism. The integration of these
three techniques, tailored to the characteristics of functional
patterns, reduces the runtime of fault simulation from different
perspectives. The experimental results show that on a 48-core
system, an average 79x speedup can be achieved by our parallel
fault simulator against a commercial tool.

Index Terms—Fault simulation, Functional patterns, Fault fil-
tering, Fault grouping, Parallel acceleration

I. INTRODUCTION

Functional safety in chips ensures that electronic systems
operate correctly and safely, even in the presence of hardware
failures [1]. It is a critical aspect of design that addresses the
reliability and safety requirements of systems, particularly in
applications where failures could lead to hazardous situations.
For instance, in the context of autonomous driving, a failure in
the chip’s functionality could result in the inability to execute
critical safety maneuvers, highlighting the imperative need for
functional safety measures to prevent such risky scenarios.

Fault simulation, crucial for identifying and mitigating faults
within the chip, is an indispensable part of chip testing and
verification. Within the context of functional safety, fault sim-
ulation is a vital tool for verifying the effectiveness of safety
mechanisms in preventing, detecting, and mitigating risks [2].

Functional patterns, which are significantly different from
scan patterns, are the patterns used in fault simulation within
the functional safety domain. Scan patterns usually last for
a maximum of several clock cycles, with each pattern being
independent of the others. Whereas functional patterns, can
cover tens of thousands to millions of clock cycles [3]. Within
such extensive clock cycles, the logic states of the circuit’s
internal nodes hinge on the simulation results from preceding
clock cycles, reflecting the circuit’s functional behavior over
time. Therefore, fault simulation for functional patterns requires

This work is supported by the Major Key Project of PCL under grant No.
PCL2023A03, the National Natural Science Foundation of China (NSFC) under
grant No. 92473203 and No. 92373206. (Corresponding author: Liyang Lai.)

continuously considering the fault effect over such a large
number of clock cycles.

Ensuring a chip’s compliance with functional safety stan-
dards necessitates the iterative process of fault simulation,
which demands that the simulation’s runtime is at a manageable
level. However, as the functional patterns can span millions of
clock cycles, this essential process faces the significant chal-
lenge of extensive simulation time. For example, performing
fault simulation on designs with hundreds of thousands of
gates and million-cycle functional patterns can take several
months. Based on this situation, the functional safety standard
ISO26262 allows for the sampling of the fault list [4], facilitat-
ing a more efficient evaluation process. Nevertheless, applying
a sampling factor must comply with stringent criteria, such as
confidence levels and the specific nature of safety mechanisms,
which means that the fault simulation time will still carry
a certain burden. This is further amplified by the extended
duration needed to obtain more precise information through
the simulation of a full fault list. Consequently, expediting the
fault simulation process is crucial to enhancing the efficiency
and adaptability of functional safety verification.

A lot of research has been done in the area of fault simulation
acceleration. PROOFS [5] identifies inactive faults in each time
frame and only simulates the active faults. However, all state
nodes with faulty values must be stored to identify inactive
faults in the next time frame, resulting in significant overhead
when applied to functional patterns due to the large number of
clock cycles involved. HOPE [6] further reduces the faults to be
simulated in the fanout-free region but requires additional local
logic and fault simulations to map non-stem faults and examine
stem faults in each time frame, which makes it impractical
for functional patterns with numerous clock cycles. Other
improved methods have also been proposed [7] [8], but none
consider the characteristics of functional patterns, making them
unsuitable, while some studies focus on functional patterns for
fault grading at the RTL [9] [10] but fail to provide accurate
fault coverage. In addition, some researchers turned to emerging
technologies, such as parallel computing with multi-core CPUs
and GPUs [11] [12] [13], to speed up fault simulation for
scan patterns. As far as we know, acceleration techniques for
fault simulation presented in the existing literature primarily
target scan patterns while there is a notable lack of acceleration



methods for functional patterns. This leaves the speeding up of
fault simulation for functional patterns as a critical challenge
yet to be addressed.

In the paper, we propose a parallel fault simulator to achieve
efficient fault simulation for functional patterns. With the char-
acteristics of functional patterns in mind, three techniques are
deployed in the fault simulator to accelerate the fault simulation
process. 1) Fault filtering is conducted to decrease the number
of faults requiring simulation. 2) Fault grouping is performed
to group faults with an early stop time frame and cease the
simulation process ahead of time. 3) The implementation of
CPU-based parallelism, in harmony with the NUMA architec-
ture, maximizes the performance of our fault simulator.

The remaining paper is organized as follows. Backgrounds
are described in Section II. Section III presents our proposed
fault simulator. It is followed by experimental results and anal-
ysis in Section IV. Finally, the paper concludes with Section V.

II. BACKGROUND

In this section, terms about fault simulation, fault parallelism
and the NUMA architecture are introduced. Throughout this
paper, we consider three logic values for signal lines: 0, 1, and
X, where X represents an unknown state. We only assume the
presence of single stuck-at faults within circuits.

A. Terms about Fault Simulation

Let’s assume there is a stuck-at-b (b is 0 or 1) fault at line
L, and its good machine value is a (a is 0 or 1 or X), then the
fault effect at line L is expressed as a/b. If a and b are opposite,
the fault is activated, otherwise, the fault is not activated.

A fault is detected if the fault effect manifests as a 0/1
or 1/0 difference at any of the circuit’s outputs. If the only
observable discrepancy is 0/X or 1/X, the fault is potentially
detected. Conversely, the fault is considered to be undetected
if the X/0 or X/1 difference is the only possible outcome.

Due to the presence of flip-flops, faults at a time frame can
be categorized into two types based on the origin of the fault
effect [6]. The first scenario involves the fault effect emanating
only from the fault site, classifying it as a single-event fault. In
the second scenario, the fault effect arises not just at the fault
site but also from some flip-flops, leading to its classification
as a multiple-event fault. A multiple-event fault occurs when
the fault effect reaches some flip-flops as a result of the input
stimuli applied at the previous time frame.

B. Fault Parallelism

Accelerating fault simulation through bit parallelism involves
two methods: pattern parallelism and fault parallelism. For scan
patterns, each pattern lasts for about a couple of clock cycles
at most, and they are independent of each other, making them
highly suitable for pattern parallelism. In contrast, functional
patterns span tens of thousands to millions of clock cycles, with
subsequent cycles relying on the outcomes of preceding ones,
rendering the application of pattern parallelism unrealistic.

However, when considering single stuck-at faults, each fault
can be treated as independent from the others. Therefore, fault
parallelism serves as a viable technique to accelerate fault

simulation for functional patterns. Fault parallelism uses w-bit-
wide data words to represent simulation values, which indicates
that the number of parallel faults depends on the word length.
When simulating a group of parallel faults, fault dropping is
prohibited. All faults in the group must be simulated until the
decision has been made for all the faults.

In fault parallelism, fault injection is one of the key aspects.
One of the typical methods is modifying the circuit [5]. A two-
input OR gate is inserted when injecting a stuck-at-1 (SA1)
fault at a signal line, while a stuck-at-0 (SA0) fault can be
injected by inserting a two-input AND gate. One of the inputs
is used to determine the bit position of the inserted fault. Fig. 1
presents a simple example. The main overhead of this method
lies in the need to repeatedly modify and recover the circuit.
However, once the circuit modification is done, fault simulation
will proceed as swiftly as logic simulation. Another method
involves injecting faults by defining a fault descriptor [6], which
avoids altering the circuit but introduces additional judgments
and processing during the simulation process.

SA1 SA0
X01

001

XXX XX1

101

1 2 1
2

(a) Original Circuit

SA1 SA0
X01

001

XXX XX1

101

1 2 1
2

(b) Modified Circuit

Fig. 1. Example of fault injection by modifying the circuit

C. NUMA Architecture

NUMA (Non-Uniform Memory Access) architecture is a
memory organization used in multi-processor systems. It aims
to scale the performance of high-end servers by minimizing the
bottleneck of centralized memory access.

In the NUMA architecture, CPUs are divided into multiple
NUMA nodes, each with its own independent memory space,
as shown in Fig. 2. Under NUMA, a CPU accesses its own
local memory faster than non-local memory (memory local to
another node) as it does not need to traverse the interconnect
first [14]. According to this characteristic, [13] proposed a
method to accelerate fault simulation for scan patterns. The
approach includes allocating private data in local memory and
replicating thread-shared public data, thereby helping to reduce
memory access latency.

CPUs

Local 
Memory

Node 0

fast

CPUs

Local 
Memory

Node 1

fast

Interconnect

Fig. 2. Schematic diagram of NUMA architecture

III. PROPOSED FAULT SIMULATOR

In this section, an overview of our proposed fault simula-
tor for functional patterns is described. After that, our three



proposed techniques, which substantially reduce the fault sim-
ulation time, are presented: 1) fault filtering, 2) fault grouping,
and 3) CPU-based parallelism.

A. Overview of the Simulator
Our proposed fault simulator is implemented based on fault

parallelism. At first, a one-time good machine simulation based
on the whole functional pattern is conducted to collect useful
information. Based on this information, fault filtering and fault
grouping are then performed. After that, we choose to inject the
fault by modifying the circuit. Given that functional patterns
may span millions of clock cycles, investing some effort in
modifying and recovering the circuit before and after simu-
lation can avoid the need for numerous additional operations
throughout the simulation process. After faults are injected, the
simulation is executed in parallel by multiple threads. Each
thread processes the faults in the order of time frames. Within
each time frame, the input stimuli are first applied to the
circuit’s inputs, followed by the event-driven simulation. The
detection of faults is then determined by comparing whether the
circuit’s output responses match the expected output responses.
The simulator will keep working until all the faults in the fault
list have been processed.

B. Fault Filtering
A new method is proposed that filters the fault list to reduce

the number of faults requiring simulation. Since good machine
values of some gates will persist as X under the given functional
pattern, certain faults will remain undetectable. This is because
their fault effects are only present in two scenarios during the
fault simulation process. One remains as X/0 or X/1, as shown
in Fig. 3(a). The other is converted to 1/1 or 0/0 by other input
ports, as illustrated in Fig. 3(b). Both of these fault effects are
incapable of making the fault detected or potentially detected.

always being X

SA1/SA0

1

X/1（X/0）

0

0/0a

always being X

SA1/SA0a

(a) Scenario 1

always being X

SA1/SA0

1

X/1（X/0）

0

0/0a

always being X

SA1/SA0a

(b) Scenario 2

Fig. 3. Example of fault effect propagation (faults at gate with good machine
value remaining X, where X comes from some uninitialized flip-flops)

It should be noted that faults at other inputs of their suc-
cessors may also be undetectable. Fig. 4 gives two examples.
If the successor is an AND gate, the SA0 fault at another
input will remain undetected, while the SA1 fault will remain
undetected if the successor is an OR gate. Generally, whether
a fault is considered undetectable depends on the gate type of
the successor.

Our strategy is to find out these faults and remove them
from the fault list. First, gates whose values remain X during
the whole good machine simulation process will be collected.
Then, faults at these gates’ output will be removed from the
fault list. Based on the gate type of successor, faults deemed
undetectable will also be removed. Only the remaining faults
in the fault list will be used for fault simulation.

SA0

X/0 X/1

1/0 SA1 0/1

always being X

a

always being X

a

(a) Example 1
SA0

X/0 X/1

1/0 SA1 0/1

always being X

a

always being X

a

(b) Example 2

Fig. 4. Examples of fault effect propagation (faults at other input of successor)

C. Fault Grouping

The one-time good machine simulation also reveals the last
change in the good machine values of gates. This information
can assist in grouping the faults remaining after the filtering
process. The motivation is shown in Fig. 5. As the functional
pattern is sequential, the fault simulation can be viewed as
occurring along a timeline. Let’s assume there is a gate whose
good machine value remains unchanged after time frame n.
If we can identify certain faults whose fault simulation can
be ceased at that specific time frame without changing the
result, the time required for simulating these faults could be
significantly reduced.

good machine value last changes at time frame n
Timeline

Which faults can skip the remaining time frames?

Fig. 5. Motivation for fault grouping

Based on this consideration, two types of faults are identified.
One type includes faults that cannot be activated by the last
good machine value, and the other includes faults that will be
blocked by that value. Fig. 6 provides examples of both types.
As shown in Fig. 6(a), the SA0 fault at the output of the AND
gate cannot be activated after time frame n because the good
machine value of the AND gate remains 0 after that point. Also,
SA0 faults at the input of the two inverters cannot be activated
after time frame n since they are driven by the AND gate. In
Fig. 6(b), with the inverter’s good machine value persistently
at the controlling value 0 after time frame m, both SA1 and
SA0 faults at the other input of the successor (the AND gate)
are blocked after then. Moreover, all of the faults at the inputs
and output of the OR gate are all blocked after time frame m
since there is no other path to propagate their fault effect.

always being 0 after time frame n

a SA0

cannot be actived after time frame n being blocked after time frame m

always being 0 after time frame m

b

SA1, SA0

(a) Example 1

always being 0 after time frame n

a SA0

cannot be actived after time frame n being blocked after time frame m

always being 0 after time frame m

b

SA1, SA0

(b) Example 2

Fig. 6. Examples of faults that cannot be activated and faults that are blocked
by the last good machine value

In our method, the above faults will be identified and tagged.
The tag indicates at which time frame the fault simulation for



the fault can be stopped. On the contrary, faults not tagged will
be simulated to the final time frame.

After tagging these faults, fault grouping is performed.
Firstly, faults will be extracted from the fault list. Secondly,
faults with the same stop time frame will be grouped together.
Thirdly, the stop time frames will be sorted in ascending order.
Fourthly, starting from the smallest time frame, faults that stop
at that time frame will be added back to the fault list. After
adding faults of the current time frame, move on to the next
time frame until faults with tags are all added. Finally, faults
that should be simulated to the final time frame will be added
back to the fault list. A simple example is presented in Fig. 7.

In Fig. 7, the yellow array at the top represents the fault
list before fault grouping, with its eight elements representing
eight faults (named by f0 to f7). Faults written in italics indicate
that the faults are tagged. After extracting and grouping the
faults, they are divided into four groups, as illustrated by the
four dashed rectangles in the middle. The first dashed rectangle
includes f0 and f6, indicating that they can be stopped at frame
2, and so on. After grouping the faults, they are added back to
the fault list in ascending order of time frames. The fault list
after fault grouping is shown as the yellow array at the bottom.

f0 f1 f2 f3 f4 f5 f6 f7
Fault list before fault grouping

Extract and group faults with 
same stop time frame

f0
f5
f2

frame 2 frame 3 frame 5

f0 f6 f2 f5 f4 f7 f1 f3

f6
f4
f7

f1
f3

Fault list after fault grouping

Add faults back to the fault list 
in ascending order of time frame

final frame

Fig. 7. Fault grouping with stop time frames

Since the fault simulation is conducted in a bit-parallel fault
manner, faults assigned to the same batch can only be halted
simultaneously. To ensure the accuracy of every fault’s result,
the simulation for all faults within a batch must end at the time
frame corresponding to the last fault.

It should be highlighted that even if faults are tagged to stop
at a certain time frame, some may require simulation until the
final time frame for correct results. This is due to the presence
of flip-flops. Although a fault becomes inactive or unable to
propagate its effect after a certain time frame, it could still be
detected later if the fault effect is retained in any flip-flop. This
means that if a fault transitions from a single-event fault to a
multiple-event fault before the stop time frame arrives, it should
simulate to the final time frame rather than stop earlier.

However, simulating an entire batch of faults, which are
tagged to stop earlier, to the final time frame due to just
a few multiple-event faults leads to significant inefficiency.
Therefore, our proposed method employs a specific strategy.
The simulation will continue to the final time frame only
when the stop time frame (n) and the number (m) of multiple-
event faults exceed the empirical thresholds. The thresholds are
determined through experiments and set at four levels: (1) n >

3/4 N, (2) n > 1/2 N and m > 1/2 M, (3) n > 1/4 N and m
> 4/5 M, (4) m = M, where N and M denote the number of
time frames and the number of faults in the batch, respectively.
If none of these conditions is met, the simulation will still
stop at time frame n. To ensure the final correctness of the
results in this case, multiple-event faults will be collected and
preserved until the entire fault list is processed, after which they
will be simulated again. Since the number of multiple-event
faults requiring a second simulation under this strategy is not
overly large, the overhead is deemed acceptable. An example
to illustrate this strategy is provided in Fig. 8. Faults written
in italics indicate that the faults can be stopped at time frame
n. Conversely, they transition to non-italic when they need to
simulate to the final time frame.

f1

Simulate to frame n (n > 1/2 frames)
Most of faults become 
multiple-event faults

All of the faults simulate 
to the final frame

Only one fault becomes 
multiple-event fault

Stop at frame n, collect
f1 to simulate again

f0 f2 f3 f4

f0 f1 f2 f3 f4

f0 f1 f2 f3 f4

f0 f1 f2 f3 f4

f0 f1 f2 f3 f4

Fig. 8. Stop/continue the simulation when multiple-event faults appear

It is worth noting that the information about the first change
in the good simulation values of gates can also be used for fault
grouping. However, in practical applications, it does not yield
significant benefits. Therefore, in the proposed fault grouping
technique, only the information about the last change in the
good simulation values of gates is considered.

D. CPU-based parallelism

After grouping the faults, fault simulation is performed.
In our proposed fault simulator, some CPU-based parallel
technologies are used to accelerate the simulation process.

As the fault simulation process is implemented based on fault
parallelism, the number of parallel faults is decided by the word
length. In our proposed fault simulator, we use X86 64 AVX2
intrinsics to extend the simulation value to 256 bits as shown in
Fig. 9. Since three-value logic (0, 1, X) is considered, two 256-
bit integers are used for one gate, with each corresponding bit
pair representing a simulation value. A simple coding scheme
is used, where 00, 11, and 10 denote the values 0, 1, and
X, respectively. In each of the two integers, one bit out of
256 is dedicated to representing the fault-free circuit, with the
remaining 255 bits designated for the 255 faulty circuits, which
means the number of parallel faults can reach up to 255. This
strategy is informed by the potential for functional patterns
to extend over vast numbers of clock cycles, where recording
good machine value of every time frame in advance would
necessitate prohibitive memory use.

Moreover, fault simulation is expedited by employing multi-
threading via the OpenMP API. For reducing memory access
latency under NUMA, the characteristics of the NUMA archi-
tecture are taken into account. The LIBNUMA Linux library
is used to bind threads and allocate memory to NUMA nodes.



bit255 bit254 bit253 bit252 ... bit2 bit1 bit0

1 bit for the fault-free circuit 255 bits for the 255 faulty circuits

bit255 bit254 bit253 bit252 ... bit2 bit1 bit0

corresponding bit pair
INT 0：

INT 1：

Fig. 9. Simulation value of one gate using AVX2 intrinsics

In our proposed method, threads work on different faults in
parallel by making use of data parallelism. At first, threads are
launched and evenly bind to different NUMA nodes. Then, the
private data of threads, which include simulation values of gates
and event queue for event-driven simulation, will be allocated to
the local memory of the NUMA node to reduce memory access
latency. While public data like netlist and fault list, are handled
in different ways. Since faults will be injected by modifying
the netlist, multiple copies of the netlist are made. One copy of
the netlist is provided for each thread and allocated to the local
memory. The way to bind threads and allocate data is presented
in Fig. 10. As for the fault list, rather than dividing it into
several parts before the simulation as [13], it will be accessed
as a whole by all threads for allocating faults dynamically.

Node 0

fast

private data
netlist copy

private data
netlist copy

thread 0
thread 1

Local Memory

CPUs Node 1

fast

private data
netlist copy

private data
netlist copy

thread 2
thread 3

Local Memory

CPUs
Interconnect

Fig. 10. Threads binding and data allocation

At the beginning of the simulation process, each thread
will load a group of consecutive faults from the fault list
in sequential order. The faults loaded to each thread will be
executed through fault parallelism. As threads will work on
their own copy of the netlist, once a thread completes the
current group of faults, it can immediately recover the netlist
and modify it for the next group of faults without waiting
for other threads. Therefore, each thread can be regarded as a
“long-lived” thread since it will keep working until no faults are
left. This arrangement naturally achieves a balanced distribution
of workload among the threads.

In this parallel approach, the only potential for a race
condition arises when two threads attempt to load a new group
of faults simultaneously. However, this can be avoided with
atomic operations. As different threads are working on different
groups of faults, the probability of simultaneous completion
by two threads is remarkably low. Therefore, the overhead
resulting from atomic operations is considered acceptable.

The pseudo-code of the fault simulation function is provided
in Algorithm 1. The outermost for loop will execute in parallel
under the effect of the OpenMP pragma statement. Each parallel
thread performs fault simulation by sequentially processing
groups of faults through the execution of a while loop. Once
all the faults in the fault list have been processed, the fault
simulation finishes.

Algorithm 1 Fault simulation by using multi-threading
Input: fault list; functional pattern
Output: fault simulation result

1: #pragma omp parallel for
2: for every thread T do
3: bind thread T and allocate data on the NUMA node;
4: while true do
5: #pragma omp atomic
6: get a group of faults;
7: if all faults in the fault list have been processed then
8: break;
9: end if

10: inject faults by modifying its own netlist copy;
11: event-driven fault simulation in every time frame;
12: remove faults by recovering its own netlist copy;
13: end while
14: end for

TABLE I
ATTRIBUTE OF EXPERIMENTAL CIRCUITS

Design #Gates #PIs #POs #FFs #Faults #Cycles
pci bridge32 38,653 162 107 3,359 122,880 50K
wb conmax 66,605 1,130 1,416 770 223,042 50K

ethernet 107,665 96 115 10,544 367,978 50K
RISC 128,395 276 351 7,391 425,154 50K

vga lcd 245,256 89 109 1,7079 836,916 50K
design1 152,162 40 42 15,737 540,040 55K
design2 164,136 40 42 16,225 594,354 125K
design3 207,852 40 42 18,388 730,118 1M

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Experiments are performed on a Linux workstation with
dual-socket processors. The processor model is Intel Xeon
Gold 6252@2.10GHz. There are two NUMA nodes. Each node
corresponds to a processor with 24 cores and 64 GB of local
memory, totaling 48 cores and 128GB of memory overall.

Experimental data are collected with five open-source de-
signs from IWLS05 benchmarks [15], as well as three CPU core
designs named design1, design2, and design3. The attributes
of the designs are presented in Table I. The pattern lengths
of functional patterns are also listed, which are calculated in
terms of the number of clock cycles. The functional patterns
used for the three CPU core designs are generated by the
design testbench during their functional verification, whereas
the patterns for the five benchmark circuits are randomly
generated. These patterns are stored in files with VCD (Value
Change Dump) format.

For comparison, the single-threaded version and multi-
threaded version of our fault simulator are realized. The single-
threaded version only utilizes 64-bit parallelism technology,
while the multi-threaded version incorporates our three pro-
posed techniques. A commercial tool, Synopsys’s TestMAX,
is also used to run fault simulation for functional patterns. It
should be noted that running fault simulation for functional
patterns with multi-threading is not supported in the com-
mercial tool. Larger cases such as multi-million-gate designs
are not used in the experiments because the runtime of the
single-threaded version and the commercial tool would be
prohibitively long (more than several months), making data



TABLE II
RUNTIME AND SPEEDUP DATA

Design

Runtime (sec.) Speedup (x) vs. Commercial tool

Commercial
tool

Single-
threaded Parallelism Grouping +

Parallelism

Filtering +
Grouping +
Parallelism

Single-
threaded Parallelism Grouping +

Parallelism

Filtering +
Grouping +
Parallelism

pci bridge 19,385.23 12,383.66 179.75 169.14 134.55 1.57 107.85 114.61 144.07
wb conmax 19,156.25 55,045.37 1,221.19 1,081.90 1,081.90 0.35 15.69 17.71 17.71

ethernet 115,245.58 82,271.43 1,532.92 1,543.62 849.87 1.40 75.18 74.66 135.60
RISC 52,753.27 47,065.93 952.05 740.34 717.08 1.12 49.44 71.26 73.57

vga lcd 240,902.80 418,463.22 9,713.26 9,562.36 6,815.80 0.58 24.80 25.19 35.34
design1 650,113.85 582,703.15 11,435.08 10,155.79 8,158.91 1.12 56.85 64.01 79.68
design2 1,643,539.09 1,448,926.53 30,013.65 26,857.63 22,372.21 1.13 54.76 61.19 73.46
design3 several months several months 4.2 days 3.8 days 3.3 days n/a n/a n/a n/a

Ave. 1.04 Ave. 54.94 Ave. 61.23 Ave. 79.92

collection difficult. Besides that, we do not compare our work
with other parallel fault simulation methods [11] [12] [13]
because they do not support fault simulation for functional
patterns, which is a key contribution of our work.

Table II presents the runtime and speedup data. Columns
2 and 3 list the runtime data of the commercial tool and
our single-threaded version respectively. Column 4 shows the
outcomes achieved by CPU-based parallelism (Parallelism).
Column 5 presents the result garnered from integrating fault
grouping with CPU-based parallelism (Grouping + Parallelism).
Column 6 lists the runtime data of our fault simulator using
all three techniques (Filtering + Grouping + Parallelism). The
speedup results are listed under column 7 to column 10. In the
experiments, the number of parallel threads is set to 48.

The speedup data are computed against the commercial tool.
With the gradual incorporation of the three techniques, the
average speedup reaches 54.94x, then escalates to 61.23x, and
finally advances to 79.92x, about 1.11x and 1.31x performance
increase. This indicates that each of the three techniques
plays a significant role in improving performance. Due to
the page limit, the runtime data for different thread counts,
which show that our parallel algorithm has good scalability,
are not presented. In addition, the speedup data for wb conmax
and vga lcd are lower than those of the others, likely due to
different algorithms used in the commercial tool.

Table III presents the experimental data of our proposed
fault grouping and fault filtering techniques. Column 2 lists
the number of multiple-event faults that are simulated twice
because of the fault grouping technique. As we can see, these
percentages are relatively low (no more than 3%), indicating
that the overhead caused by simulating some multiple-event
faults twice is acceptable. Column 3 lists the number of faults
that are filtered out because of the fault filtering technique.
These percentages are case-sensitive as they depend heavily
on gates whose good machine values persist as X under the
given functional pattern. For example, the percentage data of
ethernet is more than 30%, while no fault can be filtered in
wb conmax. This is due to the fact that there are many PIs
(more than 1k) and very few FFs (only 1.15% of the total gates),
making the circuit easy to control and causing the good machine
values of most of the gates to change to deterministic values
rather than persist as X. The last column presents the elapsed

time of the preprocessing process (including the one-time good
machine simulation), which is incorporated in the total runtime
listed in Table II. As is shown, the overhead introduced by the
preprocessing process constitutes only a small portion of the
total runtime but yields significant benefits.

TABLE III
EXPERIMENTAL DATA OF FAULT GROUPING AND FILTERING

Design #Faults
Sim Twice

#Faults
Filtered Out

Preprocessing
Time (sec.)

pci bridge32 1,559 (1.3%) 16,869 (13.7%) 8.6 (6.4%)
wb conmax 781 (0.4%) 0 (0.0%) 34.2 (3.2%)

ethernet 361 (0.1%) 111,845 (30.4%) 18.4 (2.2%)
RISC 8,322 (3.0%) 7,966 (1.9%) 11.5 (1.6%)

vga lcd 2,420 (0.3%) 113,725 (13.6%) 60.5 (0.9%)
design1 13,446 (2.5%) 56,309 (10.4%) 97.2 (1.2%)
design2 12,727 (2.1%) 51,059 (8.6%) 236.3 (1.1%)
design3 12,007 (1.7%) 49,559 (6.8%) 2176.4 (0.8%)

V. CONCLUSION

In the paper, an efficient parallel fault simulator for func-
tional patterns on multi-core systems is proposed. With the
characteristics of functional patterns in mind, three techniques
are deployed in the fault simulator to reduce the runtime of
fault simulation from different perspectives. 1) To reduce the
number of faults to be simulated, fault filtering is performed.
2) Faults eligible for early termination are grouped together,
allowing the simulation for them to conclude ahead of schedule.
3) The deployment of CPU-based parallelism, coupled with the
NUMA architecture, further accelerates the simulation speed.
By employing these three techniques, an average 79x speedup
can be obtained on a 48-core system.

REFERENCES

[1] R. H. Leo, Why Functional Safety in Road Vehicles?, Chan: Springer
International Publishing, 2016, pp. 7-39.

[2] F. A. da Silva, et al., “Combining fault analysis technologies for
ISO26262 functional safety verification,” IEEE Asian Test Symposium,
2019, pp. 1290-1295.

[3] L. Lai, et al., “Parallel Logic Simulation for Functional Test,” Journal of
Computer-Aided Design & Computer Graphics (in Chinese). 2023, pp.
803-810.

[4] ISO: ISO 26262 Road Vehicles - Functional Safety, ISO Standard, 2018.
[5] T. M. Niermann, et al., “PROOFS: a fast, memory-efficient sequential

circuit fault simulator,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 1992, 198-207.



[6] H. Lee, D. Ha, “HOPE: An efficient parallel fault simulator for syn-
chronous sequential circuits,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 1996, pp. 1048-1058.

[7] C. R. Graham, E.. M. Rudnick and J. H. Patel, “Dynamic fault grouping
for PROOFS: a win for large sequential circuits,” International Confer-
ence on VLSI Design, 1997, pp. 542-544.

[8] C. Kung, C Lin, “HyHOPE: fast fault simulator with efficient simulation
of hypertrophic faults,” IEEE International Conference on Computer-
Aided Design, 1994, pp. 53-60.

[9] P. A. Thaker, V. D. Agrawal, M. E. Zaghloul, “Register-transfer level
fault modeling and test evaluation techniques for VLSI circuits,” IEEE
International Test Conference, 2000, pp. 940-949.

[10] H. Fang, et al., “RT-Level Deviation-Based Grading of Functional Test
Sequences,” IEEE VLSI Test Symposium, 2009, pp. 264-269.

[11] H. Li, et al., “nGFSIM: A GPU-based fault simulator for 1-to-n detection
and its applications,” IEEE International Test Conference, 2010, pp. 1-10.

[12] J. Hu, et al., “Adaptive Multidimensional Parallel Fault Simulation
Framework on Heterogeneous System,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2022, pp. 1951-1964.

[13] S. Ye, et al., “Fault Simulation Acceleration Based on ARM Multi-core
CPU Architecture,” IEEE Asian Test Symposium, 2023, pp. 1-5.

[14] C. Lameter, “An overview of non-uniform memory access,” Communi-
cations of the ACM, 2013, pp. 59-64.

[15] IWLS 2005 Benchmarks. 2005. http://iwls.org/iwls2005/benchmarks.html.


	Introduction
	Background
	Terms about Fault Simulation
	Fault Parallelism
	NUMA Architecture

	Proposed Fault Simulator
	Overview of the Simulator
	Fault Filtering
	Fault Grouping
	CPU-based parallelism

	Experimental Results and Analysis
	Conclusion
	References

