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Abstract—Although artificial intelligence (AI) has made signif-
icant progress in the electronic design automation (EDA) field,
specialized infrastructure remains insufficient. In this paper, we
analyze the necessary components for the integration of AI with
EDA, propose a data decomposition from design to vector, and
build an open-source AI-aided design (AAD) library. This library
aims to transform chip data into vectors, train AI4EDA models,
and integrate trained models into the chip design flow.

Index Terms—AI-aided chip design, open-source library

I. INTRODUCTION

In the EDA domain, the intricacies of tasks such as design
space exploration, logic optimization, placement, and routing
exemplify the inherent challenges faced. Traditional algorithms,
when applied to these tasks, often get stuck in sub-optimal
solutions, necessitating compromises in quality or incurring
prohibitive computational costs. However, the emergence of AI
has introduced opportunities in the field of EDA. Leveraging AI’s
advanced search capabilities and sophisticated learning algo-
rithms, AI demonstrates its transformative potential by delivering
more efficient and higher-quality solutions [1].

Although AI has made considerable progress in EDA, the
field still lacks specialized research infrastructure [2]. The in-
dustry needs specialized AI models tailored for EDA tasks,
accessible labeled chip datasets, and AI libraries or packages
for IC/EDA design. Recently, the Python APIs in iEDA [3] and
OpenROAD [4] wrap their underlying C++ API to generate data
more quickly. NVIDIA’s CircuitOps [5] has introduced solutions
for efficient data handling and can leverage the Python API in
OpenROAD as a feedback loop, further enhancing interaction
with machine learning algorithms. Therefore, establishing and
enhancing these infrastructures is an urgent issue that needs to
be addressed in future AI/EDA research and applications.

II. DESIGN-TO-VECTOR

The digital chip design flow converts RTL Verilog into a
GDS-II layout. However, for AI tasks, traditional design formats
may be insufficient. We require vectorized data such as vectors,
matrices, and tensors. To address this, we propose a new data
transformation method for AI4EDA, “design-to-vector,” which
converts chip designs into vectors. “design-to-vector” consists of
several stages, as illustrated in Fig. 1. Given chip data, we run
the chip design flow using EDA tools that generate intermediate
formats such as GTech/AIG, netlist, DEF, GDS, and SPEF, which
are stored as basic data. Additional features or metrics are then
derived from the design process and stored in formats like JSON,
CSV and so on. To improve AI models’ ability to process and

Fig. 1. Design-to-vector.

understand EDA tasks, it is essential to gather comprehensive
data from the entire design process, including both results and
features. These diverse features extracted from the chip design
process are easily transferred to a vector format and saved into
a vector database system, encompassing graphs, maps, vectors,
matrices, and tensors. For the design results, we propose a
vectorization technique to hierarchically decompose a design into
wire sets. Fig. 2 illustrates the detailed process of vectoring a
design: from netlist and layout to wire.

Fig. 2. Netlist/layout-to-wire.

III. AIEDA: AI-AIDED DESIGN (AAD) LIBRARY

Traditionally, computer-aided design (CAD) has significantly
advanced chip design automation, and AI has now proven its
strong capabilities in this area. To enhance AI-assisted design,
we develop an open-source AI-aided design (AAD) library
(AiEDA), which provides three key components: 1) Python
APIs for EDA tools; 2) Vectorized data formats for effective
representation and sharing; and 3) Evaluation of AI models
within the chip design flow. The open-source repository of
AiEDA is: https://github.com/OSCC-Project/AiEDA.

To develop AI models for EDA, developers are accustomed
to using Python APIs provided by EDA tools. These APIs not



only enable easy access to data but also support efficient model
training and feedback optimization, allowing AI researchers to
engage more deeply with EDA tools and refine their models.
Second, we need some easy-to-use tools or flows to convert chip
data into vectorized data. Finally, a comprehensive evaluation
system for trained AI models is essential. This evaluation system
can easily integrate trained AI models into existing EDA tools
and workflows. By comparing outputs, this system can assess
performance and validate proposed solutions.

IV. AIEDA APPLICATIONS

With AiEDA, we can easily extract various features, convert
design data to vectors, build AI models for EDA tasks, and
integrate these models into the chip design flow for evaluation
and inference. We have successfully transformed 50 chip designs
into wires, with the comprehensive statistics presented in Table
I. Additionally, we can perform insightful data analysis and
optimization of chip design, including data statistics, correlation
analysis, similarity analysis, variable regression, design classi-
fication, metric fitting and prediction, design space exploration,
and algorithm or tool optimization.

TABLE I
DESIGN STATISTICS SUMMARY

Designs Cells Nets Pins Wires Nets Patches Paths

Num Size Num Size Num Size

s38584 6K 7K 22K 98K 7K 61M 12K 90M 5K 63M
aes 17K 18K 67K 326K 18K 211M 36K 312M 12K 633M
eth top 38K 39K 133K 647K 39K 433M 170K 910M 20K 562M

. . . 45 more designs . . .

T1 1.3M 1.2M 4.2M 18M 1.2M 11G 2.4M 16G 736K 16G
C910 3.3M 2.9M 9.6M 52M 2.9M 33G 6.2M 53G 1.7M 30G

Total 23M 21M 72M 347M 21M 212G 52M 348G 12M 190G

Path Delay Prediction: From the path data, we can easily
parse resistance, capacitance, and slew as features, with total
path delay as labels. We employed Transformer and MLP as our
base models, collecting 10,000 paths for training and 2,000 paths
for testing. The final model achieved a mean absolute error of
approximately 0.04, corresponding to a relative error of 7%.

Wirelength Prediction: From the net data, we can easily
parse features from the placement stage, such as RSMT, pin num-
ber, and aspect ratio, with the ratio of post-routing wirelength to
RSMT as labels. We used XGBoost as our base model, collecting
100,000 nets for training and 25,000 nets for testing. We also
built a via prediction model with an R² value of about 0.94
(Fig. 3(a)). By adding the via prediction results as extra features
to the wirelength model, we reduced the mean relative error by
4%, with the error distribution shifting to the left (Fig. 3(b)).

Design Rule Violation Prediction: Using the patch data, we
can reconstruct full-layout features. Each patch serves as a pixel
in the image, storing multiple features such as pin density and
DRC violations. We used CNN as our base model to predict the
violation distribution. The prediction results are shown in Fig. 4.

Routing Net Generation: The combination of net and patch
data can enable various applications, as illustrated in Fig. 5(a).
By representing the 3D net information in a 2D format and
indexing the corresponding patches, we can access the patch-
level features such as congestion. Based on this, we conducted
a 2-pin routing generation task using a transformer-based model

(a) (b)

Fig. 3. Model performance evaluation: (a) via prediction model accuracy and
(b) wirelength ratio error distribution comparison.

Fig. 4. Prediction of DRC violations using patch data.

that effectively learns the routing patterns by leveraging the
combined net and patch features. The routing net generation
results are shown in Fig. 5(b).

(a)

(b)

Fig. 5. Routing generation: (a) Integrating net and patch (b) Generation results.

V. CONCLUSIONS

We show a flow from design to vector. We build an open-
source library (AiEDA) to achieve AI-aided design. We list some
demos to show the possible applications of AiEDA.
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