IEEE TRANSACTIONS ON COMPUTER-AIDER DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, NOVEMBER 2025 1

AIEDA: An Open-Source Al-Aided Design Library
for Design-to-Vector

Yihang Qiu, Zengrong Huang, Simin Tao, Hongda Zhang, Weiguo Li,
Xinhua Lai, Rui Wang, Weigiang Wang, Xingquan Li

Abstract—Recent research has demonstrated that artificial
intelligence (AI) can assist electronic design automation (EDA)
in improving both the quality and efficiency of chip design.
But current Al for EDA (AI-EDA) infrastructures remain frag-
mented, lacking comprehensive solutions for the entire data
pipeline from design execution to Al integration. Key challenges
include fragmented flow engines that generate raw data, hetero-
geneous file formats for data exchange, non-standardized data
extraction methods, and poorly organized data storage. This
work introduces a unified open-source library for EDA (AiEDA)
that addresses these issues. AIEDA integrates multiple design-to-
vector data representation techniques that transform diverse chip
design data into universal multi-level vector representations, es-
tablishing an Al-aided design (AAD) paradigm optimized for Al-
EDA workflows. AIEDA provides complete physical design flows
with programmatic data extraction and standardized Python
interfaces bridging EDA datasets and Al frameworks. Leveraging
the AiEDA library, we generate iDATA, a 600GB dataset of
structured data derived from 50 real chip designs (28nm), and
validate its effectiveness through five representative AAD tasks
spanning prediction, generation, and optimization. The code
is publicly available at https://github.com/OSCC-Project/AiEDA,
while the full iDATA dataset is being prepared for public release,
providing a foundation for future AI-EDA research.

Index Terms—Electronic design automation (EDA), Al-aided
design (AAD), Al for EDA library, vectorization dataset.

I. INTRODUCTION

HYSICAL implementation is an important part of elec-

tronic design automation (EDA), transforming gate-level
netlists into manufacturable graphic design system (GDS-
I) files. Recently, machine learning (ML) techniques have
gained significant traction in EDA, demonstrating substantial
potential for enhancing both efficiency and quality of physical
design. These ML-based methods primarily target prediction
[1]-[5], generation [6], [7], and optimization [8]-[10] tasks
across various design stages, including floorplanning [10],
placement [7], clock tree synthesis [4], and routing [8]. Despite
considerable progress in Al-aided design (AAD), the field still

This article was recommended by Associate Editor Bei Yu. (Corresponding
authors: Weigiang Wang, Email: wgwang @ucas.ac.cn; Xingquan Li, Email:
lixq01 @pcl.ac.cn)

This work was supported in part by the Major Key Project of PCL (No.
PCL2025AS04, PCL2025AS05), the NSF of China (No. 62090024), and the
NSF of Fujian Province under Grants (No. 2024J09045).

Yihang Qiu, Hongda Zhang, Xinhua Lai, Weigiang Wang are with the
School of Computer Science and Technology, University of Chinese Academy
of Sciences, Beijing, 100049, China.

Zengrong Huang, Simin Tao, Weiguo Li, Xingquan Li are with Pengcheng
Laboratory, Shenzhen, 518055, China.

Rui Wang is with the College of Computer Science and Software Engi-
neering, Shenzhen University, Shenzhen, 518060, China.

Digital Object Identifier xx.xxxx/TCAD.XXXX.XXXXXXX.

. Application E' I 3 ! gi(;*
Visu 3 - k I ” i -
Benchmark, Statistical Map Bar Trend Scatter Regression Learning

Machine Learning : Vector Data
Vector/ Layout | | Circuit Text Net Node Path Map Config | | Description
. Matrix/Tensor | yensor | | Graph | | Vector | | Vector | | Vector | | Matrix | | Tensor | | Vector || Vector
©) vec.db, pandes, > Feature Data
Structured | : - - -
Formats Design Intermediate Performance ‘ J Parameter

e Statistics - Data ! Metrics _ Settings

json, csv, xls, — — e
@) jsonl, hs, txt, ﬁ Foundation Data
Design Fil —— e — - =
"aig, Vinetiisy, " 1 Library | | EDATool] _Configuration
@ spice .def, .lef, lib, .g — — I 7|'i7 5 S
ds, xml, .brd... {} aw Data
L’ Chip Input /J

(chisel), .cdl, fir

Fig. 1. Data transformation pipeline for Al-aided design.

lacks specialized research infrastructure [11]. This gap has
motivated the development of several AAD infrastructures,
each addressing specific aspects of the research ecosystem.

A. Available AI-EDA Infrastructures

To effectively advance AAD, establishing foundational in-
frastructures is essential. From a data perspective, the trans-
formation pipeline involves three key stages. First, initial chip
design data (.verilog) is converted into detailed design
process data (.netlist/.def/.gds); we define these
primary EDA tool outputs as Raw Data. Second, this Raw
Data is parsed and structured into an Al-friendly, near-lossless
representation that we term Foundation Data (e.g., organized
into . json/ . csv files). Inspired by the paradigm of Founda-
tion Models in Al, this Foundation Data is engineered to be a
clean, comprehensive, and reusable foundation for a diverse
array of downstream Al tasks. Third, task-specific features
(Feature Data) are extracted from the Foundation Data to
generate the final vector, matrix, or tensor representations
used directly by machine learning models. Collectively, we
refer to these three stages as the design-to-vector pipeline.
Fig. 1 illustrates the complete data transformation pipeline
for AAD. Several critical components are essential for this
process: complete physical design flows with programmatic
data generation capabilities, standardized methodologies for
data representation and organization, and unified Al interfaces
bridging EDA datasets and ML frameworks. These founda-
tional elements collectively constitute AAD infrastructures,
serving as the backbone for systematic and reproducible Al-
driven EDA research.

Table I compares existing open-source infrastructures for
physical design across three dimensions: toolchain integra-

https://github.com/OSCC-Project/AiEDA

IEEE TRANSACTIONS ON COMPUTER-AIDER DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, NOVEMBER 2025 2

TABLE I
COMPARISON OF INFRASTRUCTURES FOR PHYSICAL DESIGN.
Function Run Flow Extract Data Al
m (Flow APIs) (Data APIs) Integration
OpenLANE [12] Multi X X
SiliconComliper [13] Multi X X
OpenROAD [14] Single v X
iEDA [15], [16] Single v X
METRICS2.1 [17] Single Design Process Metrics X
CircuitOps+ [18], [19] Single Graph-based Netlist Features v
AIiEDA(This work) Multi Foundation Data v

tion, data extraction support, and Al interface availability.
OpenLANE [12] and SiliconCompiler [13] integrate multiple
EDA tools to automatically generate layouts from any register
transfer level (RTL) design. Single-toolchain infrastructures
such as OpenROAD [14] and iEDA [15], [16] provide Python
interfaces that encapsulate their underlying C++ APIs, en-
abling rapid data extraction. METRICS2.1 [17] supports flow
execution using OpenROAD and standardizes design process
metrics collection in JSON format. CircuitOps [18] introduces
an intermediate representation for netlists, constructing labeled
property graphs and storing feature data in multiple CSV
files to facilitate data preprocessing using Python libraries.
Its integration into OpenROAD (CircuitOps+ [19]) enhances
ML interaction through Python API feedback loops. Other
related efforts structured design data for different goals, such
as accelerating EDA tool [20], rather than for Al integration.
Table I reveals that while pioneering infrastructures provide
critical capabilities, they often target specific aspects. For
instance, CircuitOps is expertly optimized for a graph-centric
representation of netlists, while iEDA, is a self-contained
physical design implementation, offers limited capabilities
for Al integration. In contrast, AiIEDA (this work) provides
comprehensive coverage across all dimensions: support for
multiple design flows (e.g., iEDA, OpenROAD, Innovus),
enabling Foundation Data extraction, and unified Al interfaces
bridging EDA datasets and ML frameworks.

B. Our Motivation and Contribution

The fragmentation of existing AAD infrastructures, high-
lighted in Table I, underscores the need for a more systematic
approach. Our key insight is that overcoming these limitations
requires a robust methodology and platform for transforming
design data into Al-ready formats. Building directly upon the
design-to-vector paradigm, we developed AiEDA, a compre-
hensive library designed to serve as this unified foundation.
The contributions can be summarized as follows:

« We propose the design-to-vector paradigm, a systematic
methodology for transforming heterogeneous chip design
data into a variety of structured, Al-friendly formats (e.g.,
graphs, tensors, sequences). Based on this, we define the
AAD paradigm, which shifts the focus from traditional
process-centric approaches to data-oriented workflows
optimized for Al integration.

« We develop AIEDA, a comprehensive open-source AAD
library featuring complete physical design workflows,
programmatic data extraction, structured data manage-
ment, and unified interfaces for Al applications.

o Leveraging our AiEDA library, we present iDATA, a
ready-to-use 600GB dataset featuring multi-level struc-
tured data derived from 50 real 28nm chip designs.

« We implement five representative tasks to demonstrate
the effectiveness of our library and structured dataset,
covering prediction, generation, and optimization, each
targeting a distinct level of its representation hierarchy.

This paper is structured as follows: Section II details data
challenges and examples of the design-to-vector concept. Sec-
tion III presents the AiEDA library architecture. Section IV de-
scribes the iDATA dataset. Section V presents five downstream
tasks with experimental results. Section VI draws conclusions.

II. DATA CHALLENGES AND DESIGN-TO-VECTOR

A. Data Challenges for Al-aided Design

To enable Al-aided design (AAD), high-quality training
data from real chip designs is crucial. However, current AAD
infrastructure remains fragmented, with no complete solution
existing for the entire data pipeline. Key challenges include:
(1) fragmented flow engines that generate raw data, (2) in-
consistent file formats for data exchange, (3) non-standardized
data extraction methods, and (4) poorly organized data storage.

1) Challenge 1: Fragmented Flow Engines: Al training
data generation from RTL to GDS involves multiple stages
and heterogeneous EDA tools, both commercial and open-
source [3], [5], [7]. Current tools often have inconsistent
objectives and output diverse formats and metrics, leading to
fragmented and low-quality data. This fragmentation lowers
data quality, limits interoperability, and hinders model deploy-
ment in real design flows. A unified workflow platform is
needed to standardize configurations, ensure consistency, and
enable seamless Al integration for inference and optimization.

2) Challenge 2: Heterogeneous File Formats: Table 11
summarizes common input formats for physical design tools,
illustrating file diversity. Each format possesses distinct syntax,
semantics, and structures. These formats are incompatible with
direct Al training, requiring extraction and transformation
into vectorized representations. Without a unified conversion
library, preprocessing becomes a bottleneck, delaying dataset
creation and reducing reliability. Developing a standardized
file-to-vector tool is essential to preserve design intent and
relationships while enabling rapid, consistent data preparation
for Al models, supporting scalable and effective automated
design workflows.

3) Challenge 3: Non-standardized Data Extraction: Al-
EDA research suffers from inconsistent data extraction meth-
ods, making results irreproducible. Different studies use di-
verse datasets, features, and parsing approaches, requiring
custom tool interfaces and manual feature engineering. This
inconsistency increases engineering effort, reduces feature
reliability, and prevents fair benchmarking. The lack of stan-
dardization raises entry barriers and introduces variability in
metrics. A unified data extraction framework with standardized
interfaces and verification mechanisms is essential to convert
raw EDA data into consistent, Al-ready formats.

IEEE TRANSACTIONS ON COMPUTER-AIDER DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, NOVEMBER 2025 3

[(IN1, AND1_A), (AND1_Z, INV1_l), (INV1_O, FF1_D),
(FF1_Q FF2.Q, ORT_A), (OR1 Z,OU),]

AND1 INV1 FF1

LS D Q

INT =

out
=

_L:é
o
o
o
oo
o

I
11 rr 1 coo

ocoo
ococo

il s @09

4 - il - 4
IN2 = D L — 5 E - -
FF2 2 H - - -
LK1= '[>=0 CLK - = . L I 3
(a) Netlist (b) Layout
00120 /
.1 4331 ‘1
B ne
00000 2 T o /
576 40 é
43250 ¢ net 2 -
15870 E L]
03420 * I
00000 I
(d) Net Wire & Via (e) Polygon & Polyhedron

(c) Map

Fig. 2. Examples of design-to-vector conversion for different data types.

TABLE II
FILE FORMATS USED BY PHYSICAL DESIGN TOOLS.
Function Input
Physical .v (Verilog), .lef (Library Exchange Format),

Implementation .def (Design Exchange Format), .lib (timing
library), . sdc (Synopsys Design Constraints)
.cdl (Circuit Description Language), .spice
(simulation netlist), .oa (OpenAccess database),
.gds (GDSII stream format)

.lef, .def, .1lib, .upf/.cpf (power intent),
.vcd (switching activity), . saif (switching activ-
ity), .captable (parasitic tables)

.xml (thermal parameters), .csv (thermal bound-
ary conditions), . £1p (floorplan), .ptrace (power
trace)

.sdc, .1ib, .spef (parasitic extraction), .mmmc
(multi-mode multi-corner)

.gds, .lef, .rule/.drc
.layermap (layer mapping)
.spef, .1ib, .sdc, .def

Layout Design

Power Analysis

Thermal Analy-
sis

Timing Analysis

Design Rule
Check (DRC)
Signal Integrity

(DRC rules),

4) Challenge 4: Chaotic Data Organization: Feature data
from EDA tools is often stored in fragmented formats like CSV
or NumPy, losing critical information and limiting reuse. Re-
searchers repeatedly rebuild datasets, reducing efficiency and
reproducibility. A unified framework is needed to preserve data
integrity, support multi-tool interoperability, enable Python
integration, and standardize access. This ensures consistent,
Al-ready datasets, facilitates reproducible research, and accel-
erates AI-EDA development, overcoming inefficiencies caused
by disorganized data storage and fragmented workflows.

B. Solutions of Design-to-Vector

To address the data challenges, we introduce the design-to-
vector paradigm. While converting design data for machine
learning is not new, our paradigm formalizes and unifies prior
task-specific efforts [21] into a general framework. Crucially,
“vector” is used broadly to mean any structured, Al-ready
data representation, explicitly including graphs for GNNs
and images/tensors for CNNs. Our framework standardizes
the conversion of raw, heterogeneous EDA data into these
diverse, analysis-ready formats. This systematically lowers the
engineering barrier for researchers, enabling them to readily

generate graphs from netlists, tensors from layouts, and se-
quences from timing paths. The following examples illustrate
how this paradigm is applied to different types of design data.

1) Netlist-to-Vector: A gate-level netlist consists of func-
tional gates (e.g., AND, OR), sequential elements (e.g., flip-
flops, latches), and their interconnecting nets. This structure
can be abstracted as a hyper-graph G = (V, E), where V
represents vertices (gates and primary 1/Os) and E denotes
hyper-edges (nets). For efficient storage, sparse representations
such as the Sparse Adjacency Matrix and Incidence List are
employed. Fig. 2(a) illustrates converting netlists (graph or
path) to vectors, enabling Al tasks like gate classification,
timing/power prediction, and performance optimization.

2) Layout-to-Vector: A physical layout, represented by pat-
terned layers (e.g., metal, via), can be treated as multi-channel
image data. Discretization is achieved via Binary Pixelization
or Multi-channel Encoding. Fig. 2(b) shows how geometric
patterns are converted into vector representations. Layout and
patch-level vectors support AI-EDA tasks such as congestion
evaluation, DRC violation prediction and hotspot detection.

3) Map-to-Vector: Physical design produces evaluation
metrics such as timing, power, DRC, congestion, and IR
drop maps, reflecting the spatial layout distribution. These
metrics form grid-based structures that can be discretized
into matrices. Fig. 2(c) shows this transformation into struc-
tured tensors. Map-level discretization enables multi-channel
convolution for joint spatial analysis, supporting predictive
modeling for hotspot mitigation, design closure acceleration,
and Pareto-optimal optimization across electrical, thermal, and
mechanical domains.

4) Net-to-Vector: During routing, interconnects from the
netlist are instantiated across metal and via layers following
design rules. Each net can be decomposed into geometric
primitives—wires and inter-layer vias using Steiner or critical
points as anchors. Metal wires are represented as vectors
W = (xs,Ys, Te, Ye,!) and inter-layer vias are encoded as
via = (TeyYe,lp,lt). Fig. 2(d) shows nets converted into
discrete wires and vias. This representation supports Al
tasks such as wirelength estimation, RC prediction, and rule-
compliant routing generation.

IEEE TRANSACTIONS ON COMPUTER-AIDER DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, NOVEMBER 2025

Flow Engines =>»>» Data Generation S>>

Data Management

=>»>>> Downstream Applications

Physical Design Workspace

Output

(For each flow)

Result: .def/.v
Report: . 1og/.rpt
Feature:. json/.csv

Config

*\% Floorplanning)
L Tools

R

_){/ Placement \‘
L Tools

Flow
APIs

Path: LEF/DEF/LIB

Engines

Tool: iEDA/Innovus
Step: Place/CTS/Route|

v
Scripts

Main.tcl
Definition.tcl

Clock Tree \‘
| Synthesis Tools |
Tools

\ /
P l .

/" Final

_ Design 7/“

Analysis Tools

- N Data ¢
Routing ‘ APIs —

iDRC
runDRC()
elif tool == innovus:
runInnovusDRC()

\

le

Map to Vector (e.g., Matrix) Patch

)

(

Vectorization i Tasks
Specific

L Nets | -

Ly Netlist % Prediction
% Paths H Wire &

Design Via &

ﬂ Layers H Polygon

—> Layout LB
WH Generation

Process O -

Combined

A Optimizati

Shape to Vector (e.g., Point Cloud)]

(

General

RTL to Vector (e.g., Sequential tokens) j

(

Visual

Qo

)

Fig. 3. The Al-Aided Design (AAD) library for design-to-vector.

5) Shape-to-Vector: The final chip implementation consists
of 2D and 3D shapes representing device structures. These
are discretized into machine-readable forms while preserving
topological features. 2D shapes are rasterized into grids encod-
ing material properties, with adjustable resolution balancing
accuracy and storage. 3D structures use techniques such as
2.5D layered grids, finite-element meshing, and point cloud
sampling. Fig. 2(e) illustrates planar and 2.5D discretization.
This representation supports Al-aided tasks like parasitic
extraction, thermal-structural co-simulation, electromigration
analysis, and manufacturability-aware optimization.

In AIEDA, we implement some design-to-vector approaches
to convert complex design data into structured formats, effi-
ciently address the key data challenges. To demonstrate this
in practice, a complete, vectorized instance of the gcd design
is available for inspection in our open-source repository'.

III. ATEDA: AI-AIDED DESIGN LIBRARY

Fig. 3 illustrates the AAD library architecture for design-
to-vector. The library comprises four essential components:
1) Flow Engines: supporting complete physical design work-
flows with flexible engine switching capabilities; 2) Data
Generation: enabling programmatic control for flow execution
and rich data extraction, facilitating efficient data acquisition;
3) Data Management: organizing workspaces for complex
tool interactions and enabling batch vectorization through
structured data organization; 4) Downstream Applications:
providing unified interfaces for feature engineering and Al-
based analysis, streamlining model training, validation, and
evaluation. The following subsections detail these components.

A. Flow Engines

Flow engines form the foundational component for imple-
menting and evaluating physical design processes. We catego-
rize them into tool engines (implementing specific steps like
placement and routing) and evaluation engines (assessing de-
sign features and performance metrics through processes like

Uhttps://github.com/OSCC-Project/ AiEDA/tree/master/example/sky 130_
ged/output/iEDA/vectors

static timing analysis). Available engines include open-source
options (e.g., OpenROAD, iEDA) and commercial alternatives
(e.g., Innovus, PrimeTime). Additionally, specialized tools like
DREAMPIace [22] for placement and CUGR [23] for routing
often achieve superior results for specific steps.

Our library integrates common open-source engines, com-
mercial tools, and specialized point tools. This integration
relies on standardized data exchange formats (e.g., .def) to
enable flexible tool switching—for instance, using DREAM-
Place for placement while reverting to Innovus for routing.
This eliminates integration complexities and lowers barriers
for AI-EDA research, significantly expanding possibilities for
comparative analysis. As most engines are implemented in
C++, Python interface wrappers are required to ensure seam-
less integration within AAD environments. AiEDA integrates
these diverse EDA tools as third-party libraries, managing and
invoking them through a standardized and unified interface.

B. Data Generation

We encapsulate flow engines with Python interfaces for
systematic data generation. The library provides two comple-
mentary APIs: flow APIs for design implementation and data
APIs for data extraction. These interfaces support both fine-
grained operations (e.g., legalization, wirelength calculation)
and coarse-grained workflows (e.g., full placement, compre-
hensive evaluation).

Listing 1 demonstrates the unified data generation approach.
Flow APIs enable flexible tool selection through input param-
eters—for instance, placement can utilize either iEDA’s iPL or
DREAMPIace. Data APIs specify evaluation tools and target
design stages to extract stage-appropriate data. For example,
for wirelength metrics, the system computes half-perimeter
wirelength (HPWL) and rectilinear Steiner minimum tree
(RSMT) during placement, while routed wirelength (RWL)
is calculated after routing. For the same metric, multiple tools
may be employed; for instance, DRC evaluation can employ
either iEDA’s iDRC or Innovus’s verification interface.

Implementation complexity varies significantly across tool
types. Open-source engines require only C++/Python linking
via pybindl1, while commercial tools demand TCL script

https://github.com/OSCC-Project/AiEDA/tree/master/example/sky130_gcd/output/iEDA/vectors
https://github.com/OSCC-Project/AiEDA/tree/master/example/sky130_gcd/output/iEDA/vectors

IEEE TRANSACTIONS ON COMPUTER-AIDER DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, NOVEMBER 2025 5

from aieda.workspace import workspace_create
from aieda.flows import RunFlow
from aieda.data import RunFeature

def generate_data(ws_dir, tool, step):
ws = workspace_create (ws_dir, tool)
match step:
case "floorplan":
flow = RunFlow.runFP (ws,
feat = RunFeature. fp(ws,
"place":
flow = RunFlow.runPL (ws,
feat = RunFeature.pl (ws,
"cts":
flow = RunFlow.runCTS (ws, tool)
feat = RunFeature.cts(ws, tool)
"routing":
flow = RunFlow.runRT (ws,
feat = RunFeature.rt (ws,
case _
flow = RunFlow.run (ws,
feat = RunFeature.flow(ws,
return flow, feat

tool)
tool)
case
tool)
tool)
case

case
tool)
tool)

tool)
tool)

Listing 1. Unified Python API usage for data generation.

~ output
~ workspace pathjson X| Path Definition || > dreamplace
> analyse ged > workspace > config > {} path.json “ iEDA
i g ! e Feature
v config 1 { ata
2 "def_input_path": "/¢ | v feature
> iEDA _config 3 “verilog_input_path"{ | 5 density map
flowjson 4 “tech_lef_path": "/di | 3 oo congestion_map
: ° "lef_paths®: [> margin_mal
parameter.json 6 " /data/proiect st 9 P
i flowjson X Flow Control | > RvPY-mer
pathjson ‘ ‘ - ged_CTS_baseline_powerjson
workspace.json e et ged_CTS_baseline_stajson
29 1
> feature 30 V/ result
3 © gitkeep
31 g F
v output 5 ged.CTs delgz Result
33 "eda_tool": "iEDA" ged_CTSv.gz
> dreamplace eda_ , 9 g
P 34 "pre_step": "floorp ged fillerdef.gz
> iEDA 35 step": "FixFanout T
* .state”: "success”, d_fixFanout defgz
> innovus 37 "Fpt": "on” by J
ag 3 ged_fixFanout.v.gz
> OpenROAD i oy S S
> pt 1 Parameter Setting > CTs
2 "PLYr
. > pl
> Xplace "is_max_length_op : :;‘::
4 "max_length_const
Vv script "is_timing_effort": + statis Report
"is_congestion_effort": ¢ BT
¢ gitkee o = i 4
9 P ignore_net_degree”: 100, fixFanout summary
s | “"num_threads": 1,
definition.tc "GP { optDrv.summary
main.tcl 10 "Wirelength": { optHold.summary
11 "init wirelength |

Fig. 4. Workspace architecture and file organization.

generation, execution, and report parsing—substantially in-
creasing implementation overhead.

Regarding data output, flow APIs generate standardized
design files (e.g., .def/.v). For comprehensive coverage,
data APIs extract a wide range of information, spanning
basic design statistics (e.g., cell counts, layout area), scalar
metrics (e.g., wirelength, timing, power), and spatial data (e.g.,
congestion map, DRC hotspot).

C. Data Management

We propose two core concepts for comprehensive data
management: workspace and vectorization. A workspace
serves as a pre-configured environment that centralizes pa-
rameter settings, data access, and storage operations for each
chip design. Vectorization transforms chip design data into
structured representations compatible with standard neural net-
work model input/output piplines. These enable standardized

‘ Patch (Region) | -

i
[Wire & via | [Polygon |

Fig. 5. Design-to-vector for chip data representation.

data management and high-throughput data generation through
flexible Python interfaces.

1) Workspace: Fig.4 demonstrates the hierarchical file or-
ganization within a workspace. The three core components are
detailed as follows:

a) Configuration: serves as the workspace core, man-
aging path definitions for all input/output files (e.g.,
.lef/.def/.1ib) and providing centralized control over
flow engines, including engine selection and execution pa-
rameters. Tool-specific configurations (e.g., “farget_density”
for iEDA’s iPL) are integrated through JSON files, ensuring
interactive flexibility and workflow reproducibility.

b) Output Management: automatically routes generated
data to corresponding output paths based on the selected
engine. Data is systematically categorized into: (1) design
files .def/.v stored in the result directory; (2) runtime files
.log/ . rpt archived in the report directory; and (3) extracted
data . json/.csv organized in the feature directory. Users
specify only the workspace root path while the system auto-
matically handles file routing and organization.

c) Script Management: maintains execution scripts for
commercial tool integration. When evaluating DRC with In-
novus, the system generates TCL scripts comprising parameter
definitions (definition.tcl) and tool execution com-
mands (main.tcl). Parameter scripts configure input/output
paths while execution scripts source these parameters and
invoke tool-specific commands such as verify_drc.

2) Vectorization: Fig. 5 illustrates a hierarchical design-
to-vector decomposition methodology for chip data represen-
tation. The methodology decomposes the overall design into
two fundamental components: netlist and layout. The netlist
captures logical connectivity between circuit cells, while the
layout represents physical geometric information. Decomposi-
tion continues on both branches with increasing granularity.
The netlist decomposes into path-level representations (en-
coding routing connectivity and signal propagation paths),
and net-level representations (capturing individual point-to-
point connection between specific pins). Recognizing that
path-level representations can introduce redundancy due to
overlapping segments, we also provide a holistic graph-level
representation. This allows users to directly access global con-
nectivity information in a complete and non-redundant format,
serving as a macro-level counterpoint to the fine-grained path
data. The layout decomposes into layer-level (manufacturing

IEEE TRANSACTIONS ON COMPUTER-AIDER DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, NOVEMBER 2025 6

layers such as metal and via layers) and patch-level (localized
spatial regions) data. Both branches converge at the geometric
primitive level, encompassing three fundamental elements:
wires (linear conductors), vias (inter-layer connection), and
polygons (geometric shapes).

This collection of structured, multi-level data constitutes
what we term Foundation Data, pivotal for Al applications. It
converts complex chip designs into a computationally efficient,
structured representation that preserves high data integrity. Its
inherent compatibility with Al processing frameworks enables
seamless integration across all design abstraction levels. Ulti-
mately, our vectorization methodology yields a unified, fine-
grained data foundation that ensures consistent processing and
supports diverse downstream applications.

In AIiEDA, vectorization is streamlined through simple
and intuitive interfaces, as demonstrated in Listing 2. The
framework supports flexible granularity control, allowing users
to generate vectors at different abstraction levels based on
specific application requirements.

from aieda.workspace import workspace_create
from aieda.data import RunVectors

def vectorize_data(ws_dir, tool,
ws = workspace_create (ws_dir,
vectors = RunVectors (ws)
vectors.read_def (ws.input_def)
match level:

level):
tool)

case "net":

vectors.generateNet (ws.vec_dir)
case "graph":

vectors.generateGraph (ws.vec_dir)
case "path":

vectors.generatePath (ws.vec_dir)
case "patch":

vectors.generatePatch (ws.vec_dir)
case _

feat.generateVectors (ws.vec_dir)

Listing 2. Unified Python API usage for vectorization.

D. Downstream Application

We develop process engines that selectively extract and
organize data from the Foundation Data, streamlining prepara-
tion for downstream tasks. This workflow is shown in Fig. 6.
Note that the data structures depicted in Fig. 6 are illustrative
examples and not an exhaustive list.

We categorize process engines into two types: specific
and general engines. Specific engines comprise six types:
design, net, graph, path, patch, and combined engines. These
engines follow a consistent three-stage approach: (1) loading
the Foundation Data to filter task-specific feature data us-
ing load_data (), (2) performing feature engineering and
reorganizing the data into Al-ready formats (e.g., tabular,
sequence, spatial) via parse_data (), and (3) providing
vector data to Al models through get_data (). The com-
bined engine, specifically, merges data from multi-level repre-
sentations (e.g., net-level and patch-level) to form multi-modal
representations. We also provide a general visual engine for
analyzing dataset characteristics.

A key challenge in preparing this data is handling the
variable dimensions inherent in different circuits and tasks

Design Level
summary / tool.json,
eval.json, eval.csv

Foundation
Data

Patch Level
layout_patch.json

Net Level
net.json

Graph Level
timing_graph.json

def load data():# Load data using specific process engines

-

Tabular Sequence I Spatial IMulti-modal

id, fanout, rwl, rsmt, ««« JSlew: [0.05, 0.03,
0, 1, 3990, 3600, *** 0.001,0.002, -+], | « 0 "”

Feature
Data 1,1, 3800, 4152, -+ Res: [0.0,0.0,5.0, | " o %0
2,3,15100, 14433, - |3.0, -],
3,4,39000, 37263, -+ |Cap: [0.002,0.001,
4, 1, 3600, 3385, -+ 0.0001, 0.0002, -]

def parse data():# Parse sub dataset into AI-ready

v

Tabular I Sequence I Spatial I Multi-modal
Vector [batch size > | c[hiaéﬁgrfii%;gm [batch_size x
Data max_seq_len x _(N (modall features +
[n_samples :njeatures] n_ Teatures] Xwidth modal? features)]
¥
[n_samples n_targets] [batch_size x [batch_size > 1 x [batchtsize x
n_targets] height >width] n_targets]
i def get data(): # Get vectorized data for AI models
v =
Tabular Model Sequence Model | Spatial Model Multi-modal
Model -]
Librar TabNet, MLP, LSTM, Seq2Seq, U-Net, ViT, Cross-Attention,
1 y XGBoost Transformer DETR CLIP, FiLm

def select_model () :# Select model for training and validation

Downstream
Tasks

Generation
Place, Route

Prediction
Delay, Congestion

Optimization
Parameters, PPA

Fig. 6. Data processing pipeline for downstream tasks. The data structures
depicted are illustrative examples and not an exhaustive list.

(e.g., varying net counts or path lengths). Our process en-
gines resolve this by applying modality-specific techniques:
sequential data is padded or truncated to a uniform length,
spatial data is organized into fixed-size grids, and graph data
is managed by native batching mechanisms (e.g., PyG). This
ensures the data from get_data () is seamlessly compatible
with mainstream Al frameworks, abstracting complex prepro-
cessing from the end-user.

Furthermore, AiEDA supports loading diverse model li-
braries through select_model (). For each data modality,
we provide multiple models for training and validation in a
unified environment. The model library is extensible, accom-
modating both third-party libraries and user-defined custom
models encapsulated as classes. To simplify development,
AIiEDA promotes a standardized “config — process — model
— trainer” workflow. This pattern, inspired by leading Al
frameworks, lowers the barrier for contributing new models
by providing clear, established precedents.

By introducing process engines and model libraries, AIEDA
standardizes the AAD pipeline from data loading to model val-
idation, thereby advancing AAD methodology development.

IV. IDATA: DATASET FOR AI-AIDED DESIGN
A. Data Source and Statistics

This section introduces iDATA, a large-scale, open-source
dataset built to facilitate AAD research. The complete dataset,
derived from 50 real-world chip designs, totals approximately
600 GB of structured Foundation Data, excluding the orig-
inal raw design files. Table III summarizes the statistical
characteristics of our dataset comprising 50 designs. The
dataset encompasses diverse chip designs including digital
signal/image processors (DSP/ISP), peripheral/interface cir-
cuits, functional modules, memories, CPUs, GPUs, and SoCs,

IEEE TRANSACTIONS ON COMPUTER-AIDER DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, NOVEMBER 2025 7

TABLE III
STATISTICAL CHARACTERISTICS OF THE DATASET.
Circuits Design Net Path Patch
#Cells #Nets #Wires #Files Size #Files Size #Files Size
s713 135 125 1426 121 890K 56 676K 324 1.59M
apb4_rng 195 204 2230 169 139M 132 1.29M 441 245M
gcd 297 270 3733 270 232M 136 38IM 625 3.85M
... 13 more designs ...
ASIC 1228 796 10737 796 6.82M 76 660K 121 5.36M
515850 2088 1926 27941 1925 17.33M 1724 21.00M 4225 27.66M
apb4_uart 5981 5606 83268 5555 53.45M 4652 99.96M 11449 83.34M
... 10 more designs ...
jpeg 27671 29160 366397 29160 245.32M 18128 786.71M 66049 424.45M
eth_top 42279 38552 646875 38552 434.20M 20000 562.18M 169744 967.16M
yadan 63514 31280 483369 31280 331.30M 19832 816.37M 15376 313.25M
beihai 211236 133086 2161829 132424 1.53G 52628 4.87G 92256 1.60G
SHMS 268721 251772 3610024 251686 2.51G 70672 6.45G 19153 1.98G
nvdla 289344 226974 3708427 226904 2.69G 20000 1.21G 28224 2.40G
... 12 more designs ...
nanhu-G 2793215 2646672 42524007 2643701 27.84G 20136 1.70G 75040 25.04G
openC910 3282828 2948743 52259408 2942510 36.25G 40588 2.85G 152100 33.82G
T1l_sand 4816399 4728816 79050737 4728737 50.22G 40000 5.99G 77841 44.13G
Total 23.26M 21.47M 347.15M 21.45M 235.91G 1.63M 149.87G 1.61M 207.18G

primarily sourced from open repositories (OSCPU [24], OSCC
[25], OpenLane [26], ISCAS89 [27], CHIPS Alliance [28])
and internal projects. All designs undergo RTL synthesis in
28nm technology, followed by complete physical design using
Innovus and data extraction via iEDA. We chose Innovus for
the physical design process because results from commercial
tools are widely regarded as a high-quality “ground truth” in
the Al research community, providing a stable and reliable
benchmark. The iDATA dataset is the direct artifact generated
from this workflow using our AiEDA library. Since routing
results contain comprehensive physical design information,
we construct our dataset based on routing outcomes, corre-
sponding to design-level, net-level, graph-level, path-level, and
patch-level vectorizations. Moreover, to support cross-stage
predictive tasks, we have explicitly preserved key placement-
stage features (e.g., cell density) within the Foundation Data.

Design-level vectorization captures basic statistics, tool
metrics, and evaluation metrics. Table IIl presents a subset
of basic statistical data, specifically cell, net, and wire counts.
Cell counts range from 135 to 4,816,399; net counts from
125 to 4,728,816; and wire counts from 1,426 to 79,050,737.
This broad spectrum demonstrates the extensive design scale
coverage in our dataset.

Table III also provides statistics on file counts and storage
sizes across net-level, path-level, and patch-level representa-
tions. For net-level data, #Files may be fewer than #Nets since
files are not generated for nets without wires. For path-level
data, we extract only paths containing driver pins, potentially
resulting in significantly fewer files than #Nets. Designs with
exceptionally large path counts utilize configurable parameters
to limit path generation. To ensure data completeness, we
generate a comprehensive graph-level representation for each
netlist, capturing its full topology. For patch-level data, patch
sizes are adjustable to accommodate different design scales.
For small circuits, the default patch size is set to 9 times the
pitch width, while for large designs, it is 180 times the pitch
width. This configurability enables flexible dataset generation
tailored to specific design requirements.

To assess computational requirements and scalability, vec-

Tl = 1 7 1 |

[,)-C1n 1-C2 203 3-Ca -5 s5-(,

(@)

-0 2, 2k

:; 4 -nz (3 3)-(C 4 45 s5-(s6 o I
I—HSI——nG = (1 1 2 2 1) A
17 bl 1§ b 1110 (7 72-(8 g) =
1 (9 9)=(10, 10)] e
(b)

Fig. 7. Foundation Data generation. (a) Pin-to-pin net. (b) Patch.

« patchs Y ee | netjson €. o | Patch.json

1
2

“name”: “clk®, - " ’ —

patch_0json a feature": 3 patch_id_rou": ©,

5 . " X

11

Vv nets

net_0json

net_1 JSOh patch_1json

net_2,json patch_2json

net 3ison patch_3json

 wire_paths

wire_path_1json

wire_path_2json
wire_path_3 json “area": 20000,
wire_path_4json

wire_path_5json

"Design Statis":
“num_instanc
“num_iopins"
“num_layers": 32,
“num_layers_cut": 10,
“num_layers_routing": 10,
“num_nets": 278,

“nuf_pdn"; 5

" design feature

"Instan t

LUTE" 3666652, "GRUL"
allcell _density”:

™ wire_graph

timing_wire_graphjson
v feature
ged_CTS_baseline_power json

gecd_CTS_baseline_stajson

gcd_CTS_eval.csv

gcd_CTS_eval jsonl

ged_CTS_summary.json

ged_CTS_tool json

Fig. 8. File organization structure of the vectorized dataset.

torization was performed using 32 threads on an Intel Xeon
Platinum 8268 CPU with 1.5TB RAM. Vectorization time
ranges from tens of minutes to hours, depending on design
complexity and parameter settings (e.g., patch size). The
1.5TB memory configuration proved sufficient even for our
largest design (T1_sand), demonstrating scalability for in-
cremental dataset expansion.

B. Foundation Data Generation

Fig. 7 illustrates how Foundation Data is generated at the
net, path, and patch levels. In Fig. 7(a), a pin-to-pin net con-
nects driver pin pin_d to load pin pin_I through intermediate
nodes nl-n5. This net is decomposed into six wire segments,
which can be represented as a vector, as shown in Fig. 7(a).
Following the decomposition approach described in Fig. 5,
both paths and nets can be broken down into multiple pin-
to-pin nets. Therefore, source paths and nets can be readily
vectorized in the same manner as in Fig. 7(a). Additionally,
Fig. 7(b) shows a patch consisting of four wire segments and
an obstacle polygon, all stored in vector form. The vector
includes the = and y coordinates of the connected nodes, along
with the contour coordinates of the obstacle polygon.

We generate the Foundation Data using the method in Fig. 7
and store it in files as shown in Fig. 8. Table IV presents the
key data at each hierarchical level. Design level provides basic
statistics, tool metrics, and evaluation metrics with outputs
ranging from scalar values to spatial maps. Net level stores

IEEE TRANSACTIONS ON COMPUTER-AIDER DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, NOVEMBER 2025 8

TABLE IV
DATA CONTENT VECTORIZED AT EACH HIERARCHICAL LEVELS.
Level Key Data
Design Layout dimensions, area utilization, net/cell counts and
types, routing layers, pin distribution, tool runtime metrics
(e.g., “buffer_insertion” during CTS), wirelength, density,
timing, power, congestion maps
Net Net name/features, pin information, bounding box, parasitic
R/C, delay, slew, power, fanout, DRC counts/types, wire
segments and geometric properties
Graph Node definitions (unique le name)’ pin/port idCl’ltiﬁCl‘S, and (a) cell_density_map from EDA Tool, which (b) cell_density_map from vectorization, which
edge definitions specifying connectivity size is 39 * 39 size is 30 * 30
Path Nod_e positions, capacitance, slew rate?’. LranS{tlon types, Fig. 9. Patch-level fidelity comparison for the s713 design.
cell/interconnect delays, edge decomposition, wire R/C pa-
rameters, input/output slew, wire delay parameters
Patch Patch ID, position identifiers, boundaries, grid indices,
density metrics, RUDY/EGR congestion, timing, power, IR e 08 —=— Mean
drop, sub-net decomposition, layer-wise wire features 912 ;‘1”5"’ Dev
g B . 0.6 Max
56 £,
TABLE V 5 3
NET-LEVEL FIDELITY COMPARISON FOR THE s713 DESIGN. 5 B 02
Metric Original Reconstructed Fidelity Ratio 2 00
WNS (HS) _0972 —0989 0983 ° 0.0 01 02 Oczre?:‘%sagos 0.6 0.7 08 [5 10 Pi:.‘:coui? 25 30
TNS (ns) -3.887 -3.987 0.975
Violating Paths 7 7 1.000 (@ (b)
Total Power (W) 0.0621 0.0622 0.998

individual net information including net features, parasitic
parameters, and wire geometry details. Graph level represents
the netlist as a topological graph, defining nodes and edges
to capture the full circuit structure. Path level captures timing
path data with detailed node properties, signal parameters, and
decomposed interconnect information for each wire segment.
Patch level employs uniform spatial division to generate
patches containing position identifiers, quality indicators, and
layer-specific features for localized analysis.

C. Fidelity and Accuracy Loss Validation

The design-to-vector paradigm presents a controllable trade-
off between data fidelity and processing efficiency. This accu-
racy loss, primarily stemming from discretization techniques
like layout gridding, is minimal and considered acceptable
for AI-EDA tasks that prioritize spatial patterns over absolute
coordinate precision. The process’s high fidelity is illustrated
with the s713 designs.

At the net-level (logical topology), we reconstructed a DEF
file from its Foundation Data (net . json) and compared it
to the original. The results, summarized in Table V, revealed
negligible deviation. Key metrics such as the number of
timing-violating paths remained identical, while fidelity ratios
for timing (WNS, TNS) and power approached 1.0, confirming
the preservation of critical electrical characteristics. At the
patch-level (geometric layout), a comparison between the
original and the reconstructed cell density maps is shown in
Fig. 9. Despite a reduction in resolution, the reconstructed map
clearly preserved the original’s key spatial features. This visual
similarity was quantified by a high correlation coefficient of
0.993. These results confirm our process preserves critical
electrical characteristics and spatial distributions, making the
minimal accuracy loss an acceptable trade-off for the signifi-
cant gains in research efficiency and accessibility.

59234 -1.3e+02§

«
3
3

apb4_timer -8.7e+

T1_sand - 1.0e+06 0

0penC910 - 2.6e+05 PILIRNT] 3.8e+02

o o o o

o o

o o
nanhu-G -3.7+05 aser02 apbs ps2-97e+01 IR 0 o 100
T1_mach - 4.7e+05 (226408 0 3 ‘5 apba_arch -7.9e+01[EH 0 0 H
% T1-24e4+05 126406 0 o S § 51488 -7 °e+°° 0 o 3005
& ysyxaz-21e405 11e406 15e+01 40ev02 [, 2 2 51238-19e+01 2186408 © 0 g
ySyx41 -2.1e+05 1.1e+06 1.5e+01 5.2e+02 ‘g gcd-3.6e+0122e402 0 0 -200 2

YSYX6-2.00+05 100406 27e+01 7des02 - apb4_rng -3.5e+0113e+02 0 0

wukong - 1.7e+05 1.0e+06 1.8e+02 0 544-33e+011.1e+02 0 0 -100
AIMP2 - 6.66+04 5.2¢405 8.7e+01 11e+03 $713-15¢+018.9e+01 0 0
dock logic matros iopads _ clock logic macros iopads
Instance Type Instance Type
(©) (@

Fig. 10. Design-level characteristics. (a) Core usage. (b) Pin count. (c¢)-(d)
Instance type distribution.

D. Data Insight Analysis

Leveraging our process engines (Fig. 6), we efficiently
analyze dataset characteristics across multiple granularities.
This analysis has a twofold objective: to provide a quantitative
overview of the iDATA dataset and to establish a foundation
for uncovering novel EDA insights. By creating a statistical
baseline and validating fundamental domain principles, we
enhance the dataset’s accessibility and reliability for both
Al researchers and EDA experts. Accordingly, our statistical
analysis focuses on the feature-rich Design, Net, Path, and
Patch levels. The Graph-level data is treated separately; as a
pure topological representation (nodes and edges) intended for
direct use in graph-centric Al models like GNNG, its value is
structural rather than statistical. Therefore, it is excluded from
the following characteristic summary.

Design-Level Characteristics. We examine three key met-
rics: core usage, pin count distribution, and instance type
composition. Core usage represents the ratio of total instance
area to core area. Fig. 10(a) shows that over half the designs
exhibit core usage within 0.5-0.6. Pin count distribution anal-
ysis in Fig. 10(b) reveals that nets with 2-3 pins predominate,
accounting for approximately 80% of all nets. The shaded
regions represent +1 standard deviation across different pin
counts. Instance types are categorized into four classes: clock,

IEEE TRANSACTIONS ON COMPUTER-AIDER DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, NOVEMBER 2025 9

R hpwl i

Layer 12

Proportion of Wirelength

slew delay power

- 083 071 0.82 Fo:LEEGFE] 1.00

i ohpwl R
(@ (b)

Fig. 11. Net-level characteristics. (a) Wirelength distribution across layers.

(b) Correlation matrix of physical metrics (RWL, HPWL) and electrical
parameters (R, C, power, delay, slew).

DI D2 D3 D4 D5 D6 D7 D8 D9 DIO

C power delay slew

logic, macro, and 10 pad. Fig. 10(c) and (d) present instance
type distributions for the top 10 and bottom 10 designs by
total instance count, respectively. The analysis shows clock in-
stances constitute 14.93% on average, logic instances 85.04%,
macro instances 0.01%, and 10 pads 0.02%.

Net-Level Characteristics. We analyze both physical met-
rics (RWL, HPWL) and electrical parameters (R, C, dynamic
power, average delay, and delta slew). Physical metrics char-
acterize routing geometry, while electrical parameters reflect
performance and timing characteristics. Fig. 11(a) illustrates
wirelength distribution across layers for various designs. Odd-
numbered layers represent vias, while even-numbered layers
correspond to metal routing layers, with Layer O reserved
for cell placement. The distribution shows that Layer 4 ac-
commodates approximately 40% of total wirelength, while
Layers 2 and 6 each account for approximately 20%. Wire
utilization decreases with increasing layer numbers. Fig. 11(b)
presents the correlation matrix, where the high correlation
coefficient (0.93) between RWL and HPWL validates HPWL
as an effective predictor for actual routing length, confirming
the efficacy of HPWL optimization during placement. Both
RWL and HPWL exhibit strong correlations with R and
C, indicating that wirelength reduction effectively mitigates
parasitic effects. The correlation analysis reveals that physical
design optimization (reducing wirelength) leads to improved
electrical performance through reduced parasitic C, which
simultaneously enhances delay and signal transition quality.

Path-Level Characteristics. We analyze four critical timing
metrics: instance delay, net delay, total delay, and stage count.
Timing paths consist of instances interconnected by nets,
with delays categorized as instance and net delays. Total
delay accumulates instance and net delays along the path,
while stage count indicates the number of instance-net pairs
traversed. Fig. 12(a) and (b) present box plots of total delay
and average stage count, revealing concentrated distributions
within narrow ranges. Fig. 12(c) demonstrates an approxi-
mately linear relationship between total delay and average
stage count, reflecting that increased stage count results in
longer paths with higher cumulative delay. Fig. 12(d) shows
the scatter plot of average instance delay versus average net
delay, indicating both metrics distribute within specific ranges,
with instance delay significantly exceeding net delay.

Patch-Level Characteristics. We examine characteristics
from both macro and micro perspectives. At the macro level,

Total Delay (ns)
228 8

: % A L

D4 D6 D9 DI D5 D8 DIO D3 D2 D7

D4 D6 D8 DIO DI D9 D5 D3 D7 D2

(a) (d)

0.50 (<=~ Trend: y=0.031x+0.082 P 16{x107 &~

0.45

- <
2 s 3
s s <

> w
k) 3 z s &
8o S 2 >
S E 8 el N
] 6 © 1 030 g
Pl @08 @
B0 2 2 8
@ o g 206 025 8
g ‘e g o s
e s 3
$ 02 g z 04 020

a

2
015 024 — <'
5 01s
0.10 o 0.0
6 10 01 02 03 04 05
Average Stage Average Instance Delay (ns)
(© (@

Fig. 12. Path-level characteristics. (a) Total delay distribution. (b) Stage count
distribution. (c) Total delay vs. stage count correlation. (d) Instance vs. net
delay comparison.

.in
6
4
00 o

(b) Pin Density

(a) Cell Density

-20
-3
50
-6
-0
100

(e) EGR Congestion

(c) Net Density (d) RUDY
o

(f) Timing (g) Power

(h) IR Drop

Fig. 13. Spatial distribution of key features in aes chip layout.

reassembled patches reconstruct complete design layouts.
Fig. 13(a)-(h) visualize eight feature maps of the aes chip,
enable layout-level tasks such as routability and IR drop
prediction as demonstrated in CircuitNet [29]. At the micro
level, each patch represents an individual sample. Fig. 14(a)
demonstrates an approximately linear relationship between
wire density and congestion across different layers, with
congestion predominantly concentrated in Layer 2. Fig. 14(b)
presents correlation analysis of patch features. Notably, con-
gestion shows moderate correlation with net density (0.32)
but weak correlation with cell density (0.06), indicating that
optimizing cell density alone is insufficient for congestion
mitigation in routability-driven placement.

Table VI compares existing open-source datasets for physi-
cal design across three dimensions: diversity, scale, and char-
acteristics. While all these datasets provide raw data, they dif-
fer significantly in their focus and capabilities. CircuitNet [29],
[30] extracts layout and graph features for prediction tasks
but sacrifices substantial data information. EDA-Schema [31]
specializes in metric extraction for prediction applications.
ChipBench [32] provides comprehensive raw data but lacks
extensive feature data, being primarily designed for metric
analysis rather than Al tasks. In contrast, iDATA originates

IEEE TRANSACTIONS ON COMPUTER-AIDER DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, NOVEMBER 2025 10

o 10
a &
Loyer2 o . wo.sg 0.38 o.39ﬂo31 I
4
6 . Zi::s ge‘\e 0590A9 057036.035 ..
6 Zye'fo O?F* -0.38 049032 041028
yer

Layer 12

‘\\)9* -0.39 057033 039018
O - R

-12 <‘<\“q 0.31 0.36 0.41 0.39 [SFIFNI
o EE - A

oo [oos oz oas R |

EGR Congestion
|
%
%(

o oo eﬁﬁw e “\‘\Qv&.a Lo

0.00 0.02 0.04 0.06 0.08 \\ve‘\ ve‘\ o

Wire Density

(a) Wire Density vs. Congestion (b) Feature Correlation Analysis

Fig. 14. Patch-level characteristics. (a) Regression analysis between wire
density and congestion across metal layers. (b) Correlation matrix of patch-
level features.

TABLE VI
COMPARISON OF OPEN-SOURCE DATASETS FOR PHYSICAL DESIGN. SCALE
MEANS THE RANGE OF CELL COUNTS. ALL DATASETS PROVIDE RAW DATA.

Datasets | Chips | Scale | Characteristic
CircuitNet [29], [30] 8 46K-1.48M Layout/Graph Features
EDA-Schema [31] 20 0.47K-0.12M | Design Process Metrics
ChipBench [32] 20 0.82K-0.86M Raw Data Only
iDATA (This work) 50 0.14K-4.82M Foundation Data

from more diverse and larger-scale designs and uniquely
provides Foundation Data. This representation retains rich,
original design information, setting it apart from the task-
specific and often information-lossy Feature Data common
to other approaches (as illustrated in Fig. 15). The richness
of this Foundation Data makes iDATA highly versatile and
directly applicable to a wide range of tasks, including analysis,
prediction, optimization, and generation. Consequently, our
approach lowers the development effort for new Al applica-
tions by providing a more powerful and flexible starting point.

V. AI-AIDED DESIGN TASKS AND RESULTS

A key advantage of the AiEDA library and the iDATA
dataset is their native support for multi-modal and multi-source
AI-EDA tasks. By preserving the unique identifiers and hier-
archical relationships between different design objects (e.g.,
nets, patches, patches, and graph) during vectorization, AiIEDA
facilitates the fusion of data from logical, physical, and timing
domains. This aligned data structure empowers researchers to
easily implement sophisticated feature engineering and explore
advanced model architectures. The applications in this section
put these principles into practice, demonstrating tasks that
leverage data from a single source as well as those that benefit
from the fusion of multiple data modalities.

All experiments presented in this section are built upon
this principle. They leverage iDATA’s Foundation Data and
AIiEDA’s process engines to load and prepare data for the
models. This approach significantly reduces the development
effort compared to other frameworks, such as CircuitNet or
CircuitOps, where developing a new task would necessitate
building a data processing pipeline from the complex raw
data from scratch. The primary goal of these applications
is to demonstrate the versatility of our framework through
accessible proof-of-concept examples. They are intended to
showcase a breadth of capabilities, rather than to establish

Foundation Data | Reusable &

e.g., net.json, patch.json

Feature Data
e.g., graph, tensors,
sequence

Raw Data Task-specific &

e.g., .def, .lef

CircuitNet/CircuitOps

Fig. 15. The relationship between Raw Data, Foundation Data, and Feature
Data, and the associated development effort for new Al tasks. The thicker the
line, the greater the develop effort.

new state-of-the-art results, which we view as important future
work this framework now helps facilitate.

To ensure representativeness, our downstream tasks cover
three Al categories (prediction, generation, optimization)
across five vectorization levels (design, net, graph, path,
patch). This section details five representative downstream
tasks to demonstrate the effectiveness of our AAD library
and dataset, including methodologies and experimental results.
All experiments were conducted on a system equipped with
Intel Xeon Platinum 8380 CPU@2.30GHz (160 cores), 512
GB RAM, and NVIDIA A100 GPU (40 GB VRAM), running
Ubuntu 18.04.5 with PyTorch 2.5.1 and CUDA 12.0.

A. Net Level Wirelength Prediction

1) Methodology: This task estimates the wirelength ratio
(RWL/RSMT) during placement. We construct the dataset
from the top 30 circuit designs in Table III, merging their nets
and randomly splitting into 80% training (>100,000 nets) and
20% testing (>25,000 nets). Each net sample is organized as
tabular data with corresponding features and labels.

We employ TabNet [33] as the base model for its superior
tabular data handling and feature selection capabilities. Our
approach implements a two-stage prediction framework: (1)
predicting via count using placement-stage features (aspect
ratio, fanout, HPWL, RSMT, L-ness [34]), and (2) predicting
wirelength ratio using both placement-stage features and the
predicted via count as input. Both models are trained with
mean squared error (MSE) loss.

2) Experimental Results: As shown in Fig. 16(a), our via
count prediction achieves robust performance with R? = 0.94.
Fig. 16(b) compares error distributions for wirelength ratio
models with and without via count features. The leftward
shift indicates improved accuracy. Specifically, incorporating
via prediction reduces mean relative error (MRE) by 6%.
This validates our framework’s effectiveness in leveraging
intermediate physical design knowledge to enhance prediction
performance.

Notably, the trained wirelength prediction model can be
exported to the standard ONNX format and integrated into a
C++-based detailed placement engine (e.g., iEDA) via ONNX
Runtime. During optimization, the engine can then query the
ONNX model in real-time, replacing low-fidelity heuristics
like HPWL with a far more accurate wirelength evaluation
for potential cell swaps. This workflow exemplifies AiEDA’s
function as a critical bridge, connecting Al models trained on
its vectorized data directly back into the physical design loop
for online optimization. Enabling such closed-loop, Al-driven
optimization is a core objective of our future work.

IEEE TRANSACTIONS ON COMPUTER-AIDER DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, NOVEMBER 2025 11

3 without via
3 with via

100 R? = 0.9402 e
z 5000

80
4000

60
3000

Frequency

2000

Predicted Via Number

e Predicted points 1000

=== Ideal line

0 20 40 60 80 100 -04 -02 00 02 04
Actual Via Number Prediction Error (predict - actual)

(@) ()
Fig. 16. Net level wirelength prediction results. (a) Via count prediction. (b)
Error distribution with/without via features.

Process Transformer

pos B2
e O
ncodingg ——

Miti-Head
Self-Attention
Feed-Forward

Network

Linear

Fig. 17. Graph level delay prediction framework.

B. Graph Level Delay Prediction

1) Methodology: This task predicts node-wise incremental
delays on locally-extracted critical-path subgraphs. We extract
these subgraphs from the top-30 designs listed in Table III
by aggregating all timing paths that shared a common clock
source. Vertices and edges are annotated with their corre-
sponding physical and electrical attributes (e.g., coordinates,
capacitance, resistance, slew). For training, node delays are
computed, log-transformed, and then normalized on a per-
design basis. The final dataset is split into training (70%),
validation (15%), and test (15%) sets, ensuring that all paths
from a single design reside in the same split.

As illustrated in Fig. 17, our approach employs a GNN-
Transformer architecture. The model processes annotated
netlists where nodes and edges are represented by feature
vectors. First, a configurable GNN encoder (GCN, Graph-
SAGE, or GIN) captures local topological and electrical
context, producing initial node embeddings. Second, these
embeddings are augmented with sinusoidal graph-Laplacian
positional encodings and fed into a Transformer encoder.
This allows the model to capture long-range dependencies
along timing paths via its multi-head self-attention mechanism.
Finally, a lightweight MLP maps the final node embeddings
to the predicted delay values.

2) Experimental Results: The performance and the pre-
diction scatter plots of the three GNN encoders on the test
set are shown in Fig. 18. All models achieve strong results
(R?z > 0.93), demonstrating the effectiveness of GNN-based
architectures for timing prediction. Among them, GIN delivers
state-of-the-art performance, achieving an MSE of 2.51% and
an R? of 0.9646. This represents a substantial improvement
over the next-best model, GCN, with 26.7% lower MSE
and 20.6% lower MAE. This advantage stems from GIN’s
powerful injective aggregation function, which allows it to
distinguish subtle local sub-structures that influence delay.
Conversely, the simple mean pooling of GraphSAGE proves

107- 2 10 A 10
MAE: 0.0700 MAE: 0.0824 /

s| | MSE: 0.0343 | gl MSE:0.0476

R 09517 . R 0.9330

MAE: 0.0556 \
MSE: 0.0251 s
R?: 0.9646 .

Predicted
IS

Predicted
IS

Predicted points

s Predicted points
0] g - Ideal line 01

-~ Ideal line 0

Predicted points
= Ideal line

0 5 10 0 5 10 0 5 10
Actual Actual Actual

(a) GCN (b) GraphSAGE (¢) GIN
Fig. 18. Scatter plot comparison of the prediction results of three GNNs

combined with Transformer on the test data.

i xixd xixa
ConvBNReLux2 | | ConvBNReLux2
Dropout=0.2 i
T i |
MaxPool | 3 K axaxs
C UpConv2d |
B . :
1| ConvBNReLux2
Dropout=0.3
TowaxT

EGR Congestion
Ground-Truth

Prediction

ux2
Dropout=0.3
J 8x

MaxPool | =2 | L

ux2
Dropout=0.4
net_density T6x1x1

Lightweight U-Net Structure

8x2x2
> upconvaa | %3

cell_density
Input Features

Output Result

Fig. 19. U-Net architecture with multi-feature input and sliding window
processing for patch level congestion prediction.

less effective, resulting in the highest error and underscoring
its inadequacy for tasks requiring sign-off-level precision.

C. Patch Level Congestion Prediction

1) Methodology: To predict the early global routing (EGR)
congestion map, we use a set of features that are all obtainable
from the placement stage, including cell density, pin density,
net density, and RUDY [35]. We construct our dataset from
the top 30 designs listed in Table III. As the number of
patches per design varies significantly, a simple random split is
suboptimal. To ensure our training, validation, and test sets are
representative of this diversity, we employ a stratified sampling
strategy. We group the designs into three strata based on patch
count (large, medium, and small) and then randomly sample
from each stratum to create a 19-design training set, a 3-design
validation set, and an 8-design test set.

Fig. 19 illustrates our data processing and baseline model
architecture. We implement a sliding window approach with
4x4 patches and stride of 3 to extract input features, effectively
capturing local spatial information and addressing inconsistent
input dimensions across designs. After standard normalization,
we design a lightweight U-Net model with end-to-end training
using MSE loss for pixel-wise congestion regression.

2) Experimental Results: The model achieves an average
normalized root mean squared error (NRMSE) of 0.18 on the
test set. While the model tends to overestimate congestion, it
accurately preserves relative spatial patterns, which is suffi-
cient for congestion-aware optimization. We further conduct
two comparative experiments to evaluate optimization strate-
gies. First, using robust normalization (RobustScaler) resulted
a suboptimal average NRMSE of 0.23. In contrast, enhancing
the model capacity (expanding channels from 4—8—16 to
16—32—64) successfully reduced the average NRMSE to
0.17. We observe that the model performs notably better on
medium and large-scale designs, achieving NRMSE values as
low as 0.12. This improved performance is likely attributable
to the richer and more diverse congestion patterns present in

IEEE TRANSACTIONS ON COMPUTER-AIDER DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, NOVEMBER 2025 12

ol

(a) Patch Features

(b) Source/Target

(¢) Ground Truth (d) Generation

Fig. 20. Qualitative results of net map generation for short and long paths.

larger layouts, which provide more comprehensive learning
opportunities for the model.

D. Net and Map Level Routing Mask Generation

1) Methodology: This task generates a two-pin net routing
map using net-level data (source and target points) with 4
spatial patch features (cell density, pin density, net density,
RUDY) in a multi-modal representation. These features are all
obtainable from the placement stage. We employ 20 designs
from the apb4 series and s series as our dataset. Following
the stratified sampling methodology detailed in Section V-C,
the dataset is partitioned into a 12-design training set, a 3-
design validation set, and a 5-design test set.

Net-level source and target points undergo one-hot encod-
ing. Patch features are processed through intra-design normal-
ization and spatial relative feature computation, yielding a 8-
dimensional composite patch feature vector. All patch regions
are resized to 16x16 grids for standardized processing.

We adopt a U-Net architecture as our base model. The
encoder and decoder paths are represented as:

{E1,Ey, B} = Encoder(X;10 — 16 — 32 — 64) (1)
Y = Decoder(B, {E;,Es};64 - 32— 16 —-1) (2)

The encoder progressively downsamples through double con-
volution blocks and max pooling to extract multi-scale fea-
tures, while the decoder upsamples via transposed convolution
and combines skip connections to recover spatial details.
The input X € R19*16x16 contains 8-dimensional composite
features and 2-dimensional source-target encodings, producing
output Y € R¥*16%16 representing the path probability map.
The model is trained using binary cross-entropy loss:

N

1
L=-%.

=1

[yi log(o(9:)) + (1 — yi) log(1 — o(3:))] (3)

where N is the total number of patches, y; is the ground truth,
y; is the predicted logit value, and o is the sigmoid function.

2) Experimental Results: The model generates a routing
probability map for each patch. For evaluation, these proba-
bilities are binarized using a threshold (default = 0.4), where 1
signifies a generated path. On the test set, the model achieves
an 81% Fl-score and a 67% Intersection over Union (IoU),
indicating a reasonable spatial overlap with the ground truth.
Fig. 20 demonstrates routing generation for nets with both
short and long path lengths. As illustrated, for short-distance

TABLE VII
COMPARISON OF DEFAULT AND OPTIMIZED PARAMETERS ACROSS
DIFFERENT DESIGNS.

Design ‘ HPWL | ‘ WNS 1 ‘ TNS 1
| Default Tuning | Default Tuning | Default Tuning
s713 1.24M 1.17M -0.84 0.33 -4.78 0.00
s1238 2.69M 2.77TM -0.05 0.29 -0.05 0.00
s1488 3.51M 3.6'™M -0.20 0.16 -0.87 0.00
s9234 6.74M 5.30M -0.30 -0.09 -2.33 -1.16
s13207 5.94M 5.81IM 0.44 0.46 0.00 0.00
apbd_ps2 476M 400M | 009 090| 000 0.00
apb4_timer | 9.8IM 6.99M 0.13 0.59 0.00 0.00
apb4_i2c 10.11M 6.60M 0.12 0.65 0.00 0.00
apb4_pwm 13.77M 8.92M 0.21 0.63 0.00 0.00
apb4_wdg 14.74M 9.69M 0.10 0.51 0.00 0.00
Impr.Ratt | — 810 — 1010 — 10/10
TABLE VIII
SINGLE-OBJECTIVE (HPWL) OPTIMIZATION ON LARGER DESIGNS.
Design | # Cells | Default HPWL Tuned HPWL | Impr.
Jjpeg 27.7k 1118.1M 312.6M 72%
eth_top 42.3k 1410.3M 691.4M 51%
yadan 63.5k 1469.2M 1155.7M 21%
SHMS 268.7k 5669.5M 4661.5M 18%
nvdla 289.3k 26677.6M 14253.1M 47%

nets, the generated path closely matches the ground truth.
However, for long-distance nets, while the model correctly
captures the overall trajectory, the lower probabilities in the
intermediate segments can result in discontinuous paths upon
binarization. In a practical application scenario, the raw (i.e.,
non-binarized) probability maps from multiple nets can be
aggregated to estimate overall routing density, which provides
predictive insights at earlier design stages; for instance, by
serving as a fast congestion predictor to guide routability-
driven placement or acting as a look-ahead engine in early-
stage global routing to anticipate resource contention.

E. Design Level Parameter Optimization

1) Methodology: This task optimizes tool parameters to
achieve superior performance across design stages. We select
the iEDA placement engine as the optimization target. We
employ the multi-objective tree-structured Parzen estimator
(MOTPE) algorithm to optimize key placement metrics, in-
cluding HPWL, WNS, and TNS. These metrics are extracted
from design-level evaluation files (eval. json). In each
iteration, MOTPE predicts parameter values that maximize
expected improvement (EI) based on historical parameter-
metric pairs. The predicted parameters are then applied to the
placement tool to generate evaluation metrics. Subsequently,
the new parameters and corresponding metrics are added to
the historical dataset. We set the iteration number to 100.
Upon completion, we collect metrics on the Pareto frontier
as experimental results.

2) Experimental Results: Table VII compares default set-
tings with optimized parameters across multiple designs. Our
approach achieves improvements in HPWL (8/10 designs),
WNS (10/10 designs), and TNS (10/10 designs), validating the
effectiveness of our parameter optimization methodology. To

IEEE TRANSACTIONS ON COMPUTER-AIDER DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, NOVEMBER 2025 13

ooy
Aiggr ®3

bk
o g - BRRH|

Fig. 21. Cell density heatmaps for the “nvdla” design before (left) and
after (middle) single-objective HPWL optimization. The difference plot (right)
visually confirms this dramatic shift in cell placement.

demonstrate the scalability of our methodology, we simplified
the problem to a single-objective optimization (HPWL) and
ran 100 DSE iterations for several large-scale designs, as
shown in Table VIII. These new results demonstrate that our
DSE methodology is highly effective on large designs, achiev-
ing significant wirelength improvements (up to 72%). Fig. 21
shows the cell density for “nvdla” before and after tuning. We
note that the scalability of this multi-objective DSE is currently
limited by the runtime of the underlying academic placer,
which is why we focused on these smaller benchmarks for the
comprehensive multi-objective evaluation. A key direction for
future work is to integrate this DSE framework with a high-
performance placer, such as DREAMPlace, to enable large-
scale multi-objective optimization.

Beyond the downstream tasks previously discussed, our
AIiEDA framework provides broader foundational support for
Al-driven EDA applications. It generates essential vectorized
data, offers a versatile Python API, and manages the complete
neural network training lifecycle. These capabilities enable
a broad spectrum of Al-enhanced EDA applications, includ-
ing DRC prediction [36], Steiner tree generation [37], 3D
capacitance extraction [38], timing prediction [39], timing
optimization [40], IR drop calculation [41], parameter op-
timization [42], and technology mapping [43]. Furthermore,
its multi-engine capabilities extend its utility beyond the Al
community to the broader EDA community for tasks such as
tool metrics benchmarking.

VI. CONCLUSION

In this work, we introduce our open-source Al-aided de-
sign (AAD) library (AiEDA) and release the iDATA dataset.
AIEDA integrates multiple design-to-vector techniques, which
converts chip design data into structured representations com-
patible with neural network model input/output pipelines.
AIiEDA provides unified workflows from design execution to
Al integration, while iDATA contains 600GB of multi-level
structured data from 50 real designs. Through five represen-
tative downstream tasks, we demonstrated the effectiveness of
our approach across design-level, net-level, graph/path-level,
and patch-level representations. This work provides the first
unified library that addresses complete data pipeline challenges
in AAD, enabling researchers worldwide to advance Al-aided
design automation more effectively. To foster collaboration, its
open-source and modular architecture is designed to be highly
extensible, welcoming community contributions to both the
library’s functionalities and the growing iDATA ecosystem.
Future work will focus on expanding vectorization capa-
bilities (e.g., layout-to-vector), improving dataset generation

efficiency, integrating additional downstream tasks, and estab-
lishing tighter EDA flow coupling for optimization guidance.
We believe this work will accelerate AI development and
adoption in the EDA domain.

REFERENCES

[1] Y. Du, Z. Guo, X. Jiang et al., “PowPrediCT: Cross-Stage Power Predic-
tion with Circuit-Transformation-Aware Learning,” in Proc. ACM/IEEE
Design Autom. Conf. (DAC), 2024, pp. 1-6.

M. Wang, Y. Cheng, Y. Lin et al., “MAUnet: Multiscale Attention U-Net

for Effective IR Drop Prediction,” in Proc. ACM/IEEE Design Autom.

Conf. (DAC), 2024, pp. 1-6.

[3] H. Park, K. Baek, S. Kim er al., “Pin Accessibility and Routing

Congestion Aware DRC Hotspot Prediction for Designs in Advanced

Technology Nodes With Consolidated Practical Applicability and Sus-

tainability,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

vol. 43, no. 12, pp. 47864799, 2024.

J. Ahn, K. Chang, K.-M. Choi et al., “DTOC-P: Deep-Learning-Driven

Timing Optimization Using Commercial EDA Tool With Practicality

Enhancement,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

vol. 43, no. 8, pp. 2493-2506, 2024.

J. Chen, J. Kuang, G. Zhao et al., “PROS 2.0: A Plug-In for Routability

Optimization and Routed Wirelength Estimation Using Deep Learning,”

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 42, no. 1,

pp. 164-177, 2023.

[6] H. Wu, Z. He, X. Zhang et al., “ChatEDA: A Large Language Model
Powered Autonomous Agent for EDA,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 43, no. 10, pp. 3184-3197, 2024.

[71 Y.-C. Lu, H. Ren, H.-H. Hsiao et al., “GAN-Place: Advancing Open
Source Placers to Commercial-quality Using Generative Adversarial
Networks and Transfer Learning,” ACM Trans. Des. Autom. Electron.
Syst., vol. 29, no. 2, pp. 32:1-32:17, 2024.

[8] L.-T. Chen, H.-R. Kuo et al., “Arbitrary-size Multi-layer OARSMT RL

Router Trained with Combinatorial Monte-Carlo Tree Search,” in Proc.

ACM/IEEE Design Autom. Conf. (DAC), 2024, pp. 1-6.

M. Zhang, Z. Zhang, Y. Niu et al., “Fast Constraints Tuning via Transfer

Learning and Multiobjective Optimization,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 43, no. 9, pp. 2705-2718, 2024.

B. Yang, Q. Xu, H. Geng et al., “Miracle: Multi-Action Reinforcement

Learning-Based Chip Floorplanning Reasoner,” in Proc. IEEE/ACM

Design Autom. Test Europe (DATE), 2024, pp. 1-6.

A. B. Kahng, “Solvers, Engines, Tools and Flows: The Next Wave for

AI/ML in Physical Design,” in Proc. ACM Int. Symp. Phys. Design

(ISPD), 2024, pp. 117-124.

M. Shalan and T. Edwards, “Building OpenLANE: A 130nm

OpenROAD-based Tapeout- Proven Flow,” in Proc. IEEE/ACM Int.

Conf. Comput.-Aided Design (ICCAD), 2020, pp. 1-6.

A. Olofsson, W. Ransohoff, and N. Moroze, “A distributed approach to

silicon compilation: Invited,” in Proc. ACM/IEEE Design Autom. Conf.

(DAC), 2022, p. 1343-1346.

T. Ajayi, V. A. Chhabria, M. Fogaca et al., “Toward an Open-Source

Digital Flow: First Learnings from the OpenROAD Project,” in Proc.

ACM/IEEE Design Autom. Conf. (DAC), 2019, pp. 1-4.

X. Li, Z. Huang, S. Tao et al., “iEDA: An Open-source Infrastructure

of EDA,” in Proc. IEEE/ACM Asia South Pac. Design Autom. Conf.

(ASPDAC), 2024, pp. 77-82.

X. Li, S. Tao, S. Chen et al., “iPD: An Open-source intelligent Physical

Design Toolchain,” in Proc. of IEEE/ACM Asia South Pac. Design

Autom. Conf. (ASP-DAC), 2024, pp. 83-88.

J. Jung, A. B. Kahng, S. Kim et al., “METRICS2.1 and Flow Tuning in

the IEEE CEDA Robust Design Flow and OpenROAD ICCAD Special

Session Paper,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design

(ICCAD), 2021, pp. 1-9.

R. Liang, A. Agnesina, G. Pradipta et al., “CircuitOps: An ML In-

frastructure Enabling Generative Al for VLSI Circuit Optimization,” in

Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), 2023, pp.

1-6.

V. A. Chhabria, W. Jiang, A. B. Kahng et al, “OpenROAD and

CircuitOps: Infrastructure for ML EDA Research and Education,” in

Proc. IEEE VLSI Test Symp. (VTS), 2024, pp. 1-4.

T. Fontana, R. Netto, V. Livramento, and et al., “How Game Engines

Can Inspire EDA Tools Development: A use case for an open-source

physical design library,” in Proc. ACM Int. Symp. Phys. Design (ISPD),

2017, pp. 25-31.

[2

—

[4

=

[5

=

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

IEEE TRANSACTIONS ON COMPUTER-AIDER DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, NOVEMBER 2025 14

[21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

H. Ren and J. Hu, Eds., Machine Learning Applications in Electronic
Design Automation. Springer International Publishing, 2022.

Y. Lin, Z. Jiang et al., “DREAMPIlace: Deep Learning Toolkit-Enabled
GPU Acceleration for Modern VLSI Placement,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 40, no. 4, pp. 748-761, 2021.
J. Liu, C.-W. Pui, E Wang er al., “CUGR: Detailed-Routability-
Driven 3D Global Routing with Probabilistic Resource Model,” in Proc.
ACM/IEEE Design Autom. Conf. (DAC), 2020, pp. 1-6.
“Open Source Chip Project by University (OSCPU).”
Available: https://github.com/OSCPU

“OSCC IP Project.” [Online]. Available: https://github.com/oscc-ip
“efabless/openlane2-ci-designs: Continuous Integration Designs for
OpenLane 2.0.0 or higher.” [Online]. Available: https://github.com/
efabless/openlane2-ci-designs

“ispras/hdl-benchmarks: Collection of Digital Hardware Modules &
Projects (Benchmarks).” [Online]. Available: https://github.com/ispras/
hdl-benchmarks

“CHIPS Alliance.” [Online]. Available: https://github.com/chipsalliance
Z. Chai, Y. Zhao, W. Liu et al., “CircuitNet: An Open-Source Dataset
for Machine Learning in VLSI CAD Applications With Improved
Domain-Specific Evaluation Metric and Learning Strategies,” [EEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 42, no. 12, pp.
5034-5047, 2023.

X. Jiang, Z. Chai, Y. Zhao et al., “CircuitNet 2.0: An Advanced Dataset
for Promoting Machine Learning Innovations in Realistic Chip Design
Environment,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2023.

P. Shrestha, A. Aversa, S. Phatharodom et al., “EDA-schema: A Graph
Datamodel Schema and Open Dataset for Digital Design Automation,”
in Proc. ACM Great Lakes Symp. VLSI (GLSVLSI), 2024, pp. 69-77.
Z. Wang, Z. Geng et al., “Benchmarking End-To-End Performance of
Al-Based Chip Placement Algorithms,” arXiv:2407.15026, 2024.

S. O. Arik and T. Pfister, “Tabnet: Attentive Interpretable Tabular
Learning,” in Proc. AAAI Conf. Artif. Intell. (AAAI), vol. 35, no. 8,
2021, pp. 6679-6687.

A. B. Kahng, C. Moyes et al., “Wot the L: Analysis of Real versus
Random Placed Nets, and Implications for Steiner Tree Heuristics,” in
Proc. ACM Int. Symp. Phys. Design (ISPD), 2018, pp. 2-9.

P. Spindler and F. M. Johannes, “Fast and Accurate Routing Demand Es-
timation for Efficient Routability-driven Placement,” in Proc. IEEE/ACM
Design Autom. Test Europe (DATE), 2007, pp. 1-6.

Y. Li, R. Liu, Z. Zeng et al., “AiDRC: Accelerating Detailed Routing
by Al-Driven Design Rule Violation Prediction and Checking,” ACM
Trans. Des. Autom. Electron. Syst., 2025.

R. Liu, S. Ding, J. Sui et al., “NeuralSteiner: Learning Steiner Tree for
Overflow-avoiding Global Routing in Chip Design,” Adv. Neural Inf.
Process. Syst. (NIPS), vol. 37, pp. 127 346-127 368, 2024.

Y. Cai, Y. Liang, Z. Luo, B. Xie, and X. Li, “PCT-Cap: Point Cloud
Transformer for Accurate 3D Capacitance Extraction,” in Proc. of IEEE
Int. Symp. EDA (ISEDA), 2024, pp. 1-6.

H. Liu, Z. Zeng, S. Tao et al, “AiTPO: KAN-UNet Heterogeneous
Network for Timing Prediction and Optimization at Global Routing,”
ACM Trans. Des. Autom. Electron. Syst., 2025.

H. Wu, Z. Huang, X. Li, and W. Zhu, “AiTO: Simultaneous gate
sizing and buffer insertion for timing optimization with GNNs and RL,”
Integration, the VLSI Journal, vol. 98, p. 102211, 2024.

H. Liu, Y. Xu, S. Tao et al., “Simultaneous Conjugate Gradient and
iAFF-UNet for Accurate IR Drop Calculation,” in Proc. of IEEE Int.
Conf. Comput. Design (ICCD). 1EEE, 2024, pp. 665-672.

X. Lai, M. Liu, X. Li et al., “iPO: Constant Liar Parameter Optimization
for Placement with Representation and Transfer Learning,” ACM Trans.
Des. Autom. Electron. Syst., 2025.

J. Liu, L. Ni, X. Li et al., “AiMap: Learning to improve technology
mapping for ASICs via delay prediction,” in Proc. of IEEE Int. Conf.
Comput. Design (ICCD). 1EEE, 2023, pp. 344-347.

[Online].

Yihang Qiu received the B.E. and M.S. de-
grees from Guangdong University of Technology,
Guangzhou, China, in 2020 and 2023, respectively.
He is currently pursuing the Ph.D. degree with
the University of Chinese Academy of Sciences,
Beijing, China. He won the First Place Award at
the ICCAD@CAD Contest in 2022. His research
interests include physical design and Al for EDA.

d =3

A
|

i)
i)

,\:.z;)
L

J

=
-

Zengrong Huang received his M.S. degree from
the School of Computer Science, Xidian University,
Xi’an, China, in 2009. He is currently an Engineer at
Pengcheng Laboratory. His research interests include
physical design and AI for EDA.

Simin Tao received his M.S. degree from the School
of Computer Science, Beijing Jiaotong University,
Beijing, China, in 2010. He is currently an Engineer
at Pengcheng Laboratory. His research interests in-
clude timing and power analysis.

Hongda Zhang received the B.E. degree from Uni-
versity of Electronic Science and Technology of
China, Chengdu, China, in 2022. He received his
M.S. degree from The University of New South
Wales, Sydney, Australia, in 2024. He is currently
pursuing the Ph.D. degree with the University of
Chinese Academy of Sciences. His research interests
include DSE and Large Language Model.

Weiguo Li received the M.S. degree in Mathematics
and Applied Mathematics from Minnan Normal Uni-
versity, Zhangzhou, China, in 2024. He is currently
pursuing the Ph.D. degree with South China Uni-
versity of Technology. His research interests include
clock tree synthesis and Al for EDA.

Xinhua Lai is currently pursuing the Ph.D. de-
gree with the University of Chinese Academy of
Sciences. He has worked as a Research and De-
velopment Software Engineer with Huawei, Wuhan,
Hubei, China. His research interests include design
space exploration, machine learning, deep learning,
large language model and optimization methods with
applications in VLSI CAD.

Rui Wang received the B.E. degree in Mathemat-
ics and Applied Mathematics from Tianjin Normal
University, Tianjin, China, in 2023. He is currently
pursuing the M.S. degree in Computer Science and
Technology at the College of Computer Science and
Software Engineering, Shenzhen University, Shen-
zhen, China. His research interests include logic
synthesis and Al for EDA.

Weiqiang Wang (Member, IEEE) received the B.E.
and M.S. degrees in computer science from Harbin
Engineering University in 1995 and 1998, respec-
tively, and the Ph.D. degree in computer science
from the Institute of Computing Technology (ICT),
Chinese Academy of Sciences, China, in 2001. He
is currently a professor with the School of Com-
puter Science and Technology, University of Chinese
Academy of Sciences. His research interests include
Al for EDA, computer vision and machine learning.

Xingquan Li (Member, IEEE) received the B.E. and
Ph.D. degree from Fuzhou University in 2013 and
2018, respectively. He is an Associate Professor at
Pengcheng Laboratory. His research interests include
EDA and Al for EDA. His team has developed
an open-source iEDA infrastructure/toolchain. He
has published over 70 papers, and received three
First Place Awards from ICCAD@CAD Contest in
2017, 2018, and 2022. In 2020, he received the
Application Award of Operations Research from the
Operations Research Society of China, and the Best

Paper Award from ISEDA 2023.

https://github.com/OSCPU
https://github.com/oscc-ip
https://github.com/efabless/openlane2-ci-designs
https://github.com/efabless/openlane2-ci-designs
https://github.com/ispras/hdl-benchmarks
https://github.com/ispras/hdl-benchmarks
https://github.com/chipsalliance

	Introduction
	Available AI-EDA Infrastructures
	Our Motivation and Contribution

	Data Challenges and Design-to-Vector
	Data Challenges for AI-aided Design
	Challenge 1: Fragmented Flow Engines
	Challenge 2: Heterogeneous File Formats
	Challenge 3: Non-standardized Data Extraction
	Challenge 4: Chaotic Data Organization

	Solutions of Design-to-Vector
	Netlist-to-Vector
	Layout-to-Vector
	Map-to-Vector
	Net-to-Vector
	Shape-to-Vector

	AiEDA: AI-Aided Design library
	Flow Engines
	Data Generation
	Data Management
	Workspace
	Vectorization

	Downstream Application

	iDATA: Dataset for AI-Aided Design
	Data Source and Statistics
	Foundation Data Generation
	Fidelity and Accuracy Loss Validation
	Data Insight Analysis

	AI-Aided Design Tasks and Results
	Net Level Wirelength Prediction
	Methodology
	Experimental Results

	Graph Level Delay Prediction
	Methodology
	Experimental Results

	Patch Level Congestion Prediction
	Methodology
	Experimental Results

	Net and Map Level Routing Mask Generation
	Methodology
	Experimental Results

	Design Level Parameter Optimization
	Methodology
	Experimental Results

	Conclusion
	References
	Biographies
	Yihang Qiu
	Zengrong Huang
	Simin Tao
	Hongda Zhang
	Weiguo Li
	Xinhua Lai
	Rui Wang
	Weiqiang Wang
	Xingquan Li

