
AiDRC: Accelerating Detailed Routing by AI-Driven Design
Rule Violation Prediction and Checking

YIFAN LI∗, Pengcheng Laboratory, China
RUIZHI LIU∗, SKLP, Institute of Computing Technology, Chinese Academy of Sciences, China
ZHISHENG ZENG, Pengcheng Laboratory, China
ZENGRONG HUANG, Pengcheng Laboratory, China
ZHIPENG HUANG, Beijing Institute of Open Source Chip, China
DONGBO BU, SKLP, Institute of Computing Technology, Chinese Academy of Sciences, China
XINGQUAN LI†, Pengcheng Laboratory, China

Design rule violation (DRV) evaluation and optimization constitute a critical challenge in modern VLSI physi-
cal design. Fast and accurate assessment of routability and DRV have gained significant research attention due
to its pivotal role in improving design closure efficiency. Traditional detailed routing and design rule check-
ing (DRC) are computationally expensive. To address the above challenges, this work leverages AI models for
the specific location prediction of DRVs at the pre-detailed routing and the checking of DRVs during detailed
routing, which achieves fast and precise DRV evaluation. By integrating the crisscross attention mechanism
and channel transformer within a ResNet backbone, our proposed DRV prediction and checking model gains
the capability to learn non-local and cross-layer relationships across different features and mitigates the
negative impact of data imbalance. Experiments demonstrate the effectiveness of our prediction model and
checking model, with area under curve (AUC) of 0.987 and F1-score of 0.934, respectively. Remarkably, being
integrated into an open-source detailed routing tool, our DRV prediction model achieves 16× acceleration,
while our DRV checking model achieves a 293× acceleration over the conventional DRC engine. By applying
the predicted DRVs to the detailed routing tool, our framework eliminates an average of 44% DRVs of the
initial detailed routing results, effectively bridging the gap between data-driven predictions and rule-based
detailed routing workflows.

Additional KeyWords and Phrases: Design rule violation, accelerating detailed routing, routability evaluation,
neural network, prediction and checking

∗Yifan Li and Ruizhi Liu contribute equally and are co-first authors.
†Corresponding author.

This work is supported in part by the Major Key Project of PCL (No. PCL2025AS04, PCL2025AS05) and the NSF of Fujian
Province under Grants (No. 2024J09045).
Authors’ addresses: Yifan Li, Pengcheng Laboratory, Shenzhen, China, liyf03@pcl.ac.cn; Ruizhi Liu, SKLP, Institute of Com-
puting Technology, Chinese Academy of Sciences, Beijing, China, liuruizhi19s@ict.ac.cn; Zhisheng Zeng, Pengcheng Lab-
oratory, Shenzhen, China, zengzhsh@pcl.ac.cn; Zengrong Huang, Pengcheng Laboratory, Shenzhen, Guangdong, China,
huangzr@pcl.ac.cn; Zhipeng Huang, Beijing Institute of Open Source Chip, Beijing, China, huangzhipeng@bosc.ac.cn;
Dongbo Bu, SKLP, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China, dbu@ict.ac.cn;
Xingquan Li, Pengcheng Laboratory, Shenzhen, Guangdong, China, lixq01@pcl.ac.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1084-4309/2024/XX-ARTXXX
https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

https://doi.org/XXXXXXX.XXXXXXX

XXX:2 Yifan Li, Ruizhi Liu, Zhisheng Zeng, Zengrong Huang, Zhipeng Huang, Dongbo Bu, and Xingquan Li

ACM Reference Format:
Yifan Li, Ruizhi Liu, Zhisheng Zeng, Zengrong Huang, Zhipeng Huang, Dongbo Bu, and Xingquan Li. 2024.
AiDRC: Accelerating Detailed Routing by AI-Driven Design Rule Violation Prediction and Checking. ACM
Trans. Des. Autom. Electron. Syst.XX, X, Article XXX (XX 2024), 29 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The physical design of very large scale integration (VLSI) circuits and systems has become increas-
ingly challenging. As chip sizes continue to shrink, the intricacy of chip design has significantly
increased. Additionally, advanced process nodes aimed at improving yield and avoiding manu-
facturing issues have led to the continuous expansion of design rules, creating a bottleneck [1].
Routing is one of the most critical and complicated steps in the physical design of VLSI circuits
[2]. Due to the intricacy of design rules, the routing process is typically divided into global routing
(GR) and detailed routing (DR), with track assignment (TA) serving as the connection. After the
routing task is completed, design rule checking (DRC) will be executed to accurately validate the
circuit. The number of violations is expected to remain below a certain limit before the final timing
closure. When numerous design rule violations (DRVs) occur in the circuit, designers must effec-
tively adjust routing settings to resolve the violations and re-run the routing [3, 4]. DRC-based
routing is an iterative process that is frequently executed during design to minimize violations [5].
However, time-consuming DRC checks can lead to slow routing convergence.

Placement

Global routing

Detailed routing

Placement & routing

Feedback

Pre-detailed

routing

Intra-Gcell

features

Previous flow AiDRC flow

Fine-grained DRV predictionCoarse-grained DRV prediction

Congestion

Pre-global

routing

Fig. 1. Coarse-grained and fine-grained DRV predictions.

To address this challenge, numerous experts have proposed faster DRC solutions, introducing
predictivemodels based onmachine learning and artificial intelligence techniques to identify DRVs
[6–8]. In this context, significant research has been conducted to predict DRVs in the early physical
design [9]. The objective is to detect potential violations as early as possible and provide accurate
corrective solutions. This approach helps reduce physical design time and improve the efficiency
of chip design. In general, as shown in Fig. 1, DRV predictions can be classified into two types.

• The first is coarse-grained prediction, which mainly predicts the number of DRVs or deter-
mines the existence of DRVs within a GCell. The GCell-level DRV prediction is generally
conducted before detailed routing (mainly placement or global routing). This prediction esti-
mates DRV based on congestion and then provides feedback for quick routability evaluation
before detailed routing.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

https://doi.org/XXXXXXX.XXXXXXX

AiDRC: Accelerating Detailed Routing by AI-Driven Design Rule Violation Prediction and Checking XXX:3

[5] [6] [7] [8] [9] Ours

AI method GCN＆CNN FCN CNN RF SVM ResCCA-CT

Stage Placement Placement Global route Placement Placement
Pre-detailed

route

Feature

Pin Proximity

Graph etc.

Rudy etc. Surrounding

Congestion etc.

Cell Utilization

etc.

Cell Density

etc.

Pre-detailed

route etc.

Level* Gcell Standard cell Gcell
Grid

(45 metal track)
Bin (4μm*4μm) Intra-Gcell

Feedback N N N N Y Y

Placement

Global route

Detailed route

Conventional flow

*Output at different granularities, with or without DRC

DRC hotspot prediction situation

Fig. 2. Current status of DRV prediction models and solutions.

• The second is fine-grained prediction, which identifies the specific locations and types of
DRC violationswithin aGCell.This detailed level of prediction can offermore precise routabil-
ity evaluation and interact with detailed routing.This prediction can accelerate detailed rout-
ing and improve the quality of detailed routing.

In Fig. 2, we summarize the current state of DRV prediction models and solutions [10–14]. Tra-
ditional approaches primarily extract relevant features from the placement or global routing stage
for DRV prediction. Since the placement stage involves fewer elements, DRV prediction and design
optimization can be executed more quickly [11]. Additionally, some studies have focused on pre-
dicting DRVs during the global routing stage. Global routing is commonly used to predict routabil-
ity, as it provides a comprehensive congestion map [15]. Most of these studies have concentrated
on the binary classification of GCells, emphasizing feature extraction. Liang et al. investigated the
complex effects of pin accessibility and routing congestion on DRV prediction, while Hung et al.
considered the influence of the surrounding environment [12, 16].

However, as the technology node size decreases, DRVs predicted solely from the GR congestion
map no longer correlate well with those that appear after detailed routing. This is due to the many
complex design rules applied to the layout to ensure manufacturability [17]. These DRVs, most of
which are not visible in the GR routing model, significantly limit the performance of the detailed
router. Therefore, GR-based methods are no longer reliable prediction tools for assessing overall
design routability or for identifying potential DRVs before DR [18]. Moreover, the approaches
mentioned above typically use a coarse-grained solution, relying on grid-based data structures
that divide the design into grid cells (GCells). These DRV prediction models generally determine
whether a violation will occur within a fixed-size grid [12]. However, this coarse-grained method
is ineffective at accurately predicting the spatial distribution of DRVs during the DR stage. DR is
generally the most time-consuming stage in the physical design process, as it must account for all
design rules to generate precise interconnections. For current commercial tools, the runtime of GR
is typically 10% or less of the runtime of detailed routing [13].Therefore, while significant progress
has been made in predicting DRVs, early-stage quick predictions offer limited acceleration for the
overall physical design. Furthermore, little research has been conducted on how to effectively use
these predictions to resolve DRVs [19].

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

XXX:4 Yifan Li, Ruizhi Liu, Zhisheng Zeng, Zengrong Huang, Zhipeng Huang, Dongbo Bu, and Xingquan Li

To accelerate detailed routing and improve the quality of detailed routing, developing an effec-
tive, fast, and accurate predictionmethod is essential.This work introduces a fine-grained DRV pre-
diction model based on ResNet and a customized feature fusion module, aiming to offer in-depth
routability evaluation and optimize detailed routing. Specifically, this prediction model quickly es-
timates potential DRVs that could arise after routing is completed, without performing the detailed
routing process. Unlike existing models that predict GCell violations during the placement stage,
our approach evaluates DRV based on track assignment results within each GCell. This provides
a finer level of granularity and enables more accurate predictions. The proposed DRV prediction
method directly outputs location-based distribution information at a finer resolution. This distinc-
tion allows it to accurately locate violations during the design iteration process, effectively pro-
viding feedback to the detailed routing stage. In addition, we utilize AI-based DRV checking for
detailed routing iterations. Note that we do not intend to replace the traditional DRC verification;
our goal is to accelerate the tedious iterative checking process using the AI model. To the best of
our knowledge, the pre-detailed routing DRV prediction model proposed in this paper is the first
to utilize track assignment results for predicting DRC conditions. The unique contributions of the
proposed AiDRC are summarized as follows:

• To the best of our knowledge, this is the first work that predicts the specific location of intra-
GCell design rule violations at detailed routing using AI model. On one hand, unlike existing
DRV prediction works, which focus on the coarse-grained prediction of the number of DRVs
or the existence of DRVs, AiDRC can provide more refined prediction and checking at de-
tailed routing, thereby more accurately reflecting potential violations. On the other hand,
compared to traditional complex DRC check methods, this AI-based prediction method can
greatly reduce the design rule check time and further improve the overall design efficiency.

• We propose a novel network architecture for our AiDRC framework that employs ResNet
as its backbone, integrating crisscross attention and channel transformer mechanism. This
architecture is specifically developed to learn non-local and cross-channel feature relation-
ships from the diverse set of pre-detailed routing features we extracted, which precisely
describe the intra-GCell states. Experimental results show an AUC of 0.987, and an FPR of
0.5%, indicating that our model is effective in identifying true violations while minimizing
false positives.

• Compared to the traditional DRC tool, experiment results show that our AiDRC prediction
achieves 16× speed-up on DRV estimation, and our AiDRC checking achieves 293× speed-
up on DRV checking. Furthermore, we integrate AiDRC into detailed routing to iteratively
guide the subsequent detailed routing and avoid unnecessary DRVs. Experimental results
show that our AiDRC achieves 44% violation reduction at the initial detailed routing. This
outcome demonstrates the significant effect of our AiDRC on reducing the number of DRVs
during detailed routing.

The remainder of this paper is organized as follows: Section 2 introduces the problem, some basic
knowledge, and our AiDRC framework. Subsequently, Section 3 provides a detailed description of
selected features. Section 4 shows our neural network model. In Section 5, a series of experiments
are introduced to validate the feasibility and efficacy of the proposed methods. Finally, Section 6
summarizes the core contributions of the paper and offers perspectives on future research direc-
tions.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

AiDRC: Accelerating Detailed Routing by AI-Driven Design Rule Violation Prediction and Checking XXX:5

Fig. 3. (a) The runtime proportion of steps in physical design. (b) Diagram of the trade-off between accuracy
and time of routability evaluation in the routing process.

2 PROBLEM AND FRAMEWORK
2.1 Problem and Motivation
With the continuous advancement of VLSI circuit design technologies, routability in physical de-
sign has become increasingly critical. Routability refers to the ability to complete all interconnec-
tions within a design area while satisfying various design constraints, and it remains one of the
major challenges in VLSI backend design. In IC physical design, metal wires are used not only
to connect nodes for optimal circuit performance but also to strictly adhere to design rules, as
violations may lead to unmanufacturable designs. It is widely recognized that the quality of cell
placement directly impacts routing feasibility. A well-optimized placement can reduce routing dif-
ficulties, whereas poor placement may compromise overall routability or even lead to circuit fail-
ures. Therefore, predicting routability quickly in the design process and avoiding numerous DRC
conflicts during detailed routing is a critical problem for accelerating physical design efficiency.

In current EDA backend design flows, placement and routing are the most complex steps, with
routing further divided into global routing and detailed routing stages. Fig. 3 shows ourmotivation.
As shown in the left diagram, the iterative process in DR is the most time-consuming and resource-
intensive phase. To mitigate the runtime losses associated with design modifications, traditional
flows typically generate a congestion map during placement using a rapid global routing test. This
approach combines congestion information from the global router with layout data, attempting to
transform global routing results into predictions that better correlate with the actual distribution of
DRVs, thereby aiding placement optimization and reducing subsequent DRC issues during routing.

On the one hand, as shown in Fig. 3(b), while traditional global routing–based routability evalu-
ation strikes a balance between time and accuracy, it is essentially a compromise. Before the time-
consuming detailed routing is completed, the actual DRVs in the chip layout remain unknown.
Accurate DRC checks can only be performed after a full global-plus-detailed routing process. Re-
cent studies have found that the gap between congestion maps generated by global routers and
the actual conditions during detailed routing is widening [18]. Some DRVs are not reflected in the
global routing stage, resulting in an overall less accurate routability evaluation. This discrepancy
can mislead routability optimization engines that rely on such information, forcing designers to
repeatedly modify the layout and thereby extending the design cycle.

On the other hand, DR is typically themost time-consuming stage in the physical design process,
as it must account for all design rules across numerous nets to ensure accurate interconnections.
In contrast, GR is significantly faster, and predictions based solely on GR provide limited benefits

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

XXX:6 Yifan Li, Ruizhi Liu, Zhisheng Zeng, Zengrong Huang, Zhipeng Huang, Dongbo Bu, and Xingquan Li

M1

M2

M2

M1
M1

M2

（a）Short （b）ParallelRunLenth Spacing（c）EndofLine Spacing （d）Minimum Spacing

Parallel Lenth

width

Spacing

width
Eol

within
Eol

spacing

spacing
spacing

M1

M2

Fig. 4. Examples of different design rules.

for accelerating iterations at this stage. Predicting DRVs before DR is crucial, as it can significantly
reduce design time and resource consumption. In addition, during the design process, routing re-
quires frequent feedback iterations with the DRC engine. As shown in Fig. 3(a), initial iterations
often experience a high number of violations, leading to slow DRC checks that dominate the rout-
ing iteration time. Therefore, accelerating the DR phase is essential for shortening the overall
physical design cycle and improving chip design efficiency.

To address this issue, an alternative approach is to use the design layout before and during
the DR stage as an image input and leverage the inherent patterns of DRVs with machine learn-
ing techniques for prediction, and further DRV checking. Machine learning methods have shown
promising prospects in this field, potentially extending routability evaluation from the early global
routing stage to the more precise detailed routing phase, and achieving more accurate predictions
to support routability assessment and more efficient routing iteration optimization.

In light of these challenges, this paper proposes a machine learning–based approach integrated
into the routing flow to enhance prediction accuracy and avoid the time-consuming detailed rout-
ing process. The proposed model takes as input key information available before detailed routing
and predicts potential DRVs that may occur during detailed routing, thereby assisting in the eval-
uation of layout routability. At the same time, fast and accurate DRC checks based on AI can sig-
nificantly save design time and resources for DR iterations. As depicted in the diagram, compared
to traditional flows, the AI-based prediction method establishes a new optimal balance between
time and accuracy, providing an effective evaluation of routing feasibility without the need for
executing the resource-intensive DR process. This, in turn, enables more informed layout design
decisions. Additionally, the model can accurately check DRV locations, offering feedback during
routing iterations and accelerating the convergence of the physical design process.

2.2 Preliminaries
2.2.1 Design Rule. In chip design, DRVs refer to regions that violate established design rules or
layout constraints. These rules are formulated to ensure the chip’s functionality, manufacturabil-
ity, and long-term reliability. Each technology node defines a specific set of design rules imposed
on the circuit layout to constrain the geometric properties of the patterns. Violations of these de-
sign rules can result in the failure of the design tape-out. DRC rules cover several critical aspects,
including circuit layout, interconnection structures, size constraints, spacing limitations, and re-
lationships between different layers. These rules arise from the limitations imposed by semicon-
ductor manufacturing processes and physical constraints, acting as an interface and agreement
between designers and process engineers. By executing DRC, design engineers can identify and
correct potential violations in time, ensuring that the chip design meets manufacturing require-
ments [20].

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

AiDRC: Accelerating Detailed Routing by AI-Driven Design Rule Violation Prediction and Checking XXX:7

X

(a) Global route (b) Track Assignment (c) Detailed route (d) Re-route

Fig. 5. Illustration of the different stages in the routing process.

When considering routing optimization to address DRVs, common approaches include adjusting
the distribution of nets, primarily to resolve violations related to shorts and spacing. To provide a
more focused and effective analysis and optimization, this work selects several key DRC rules from
the 28nm standard CMOS process’s process design kit (PDK). As shown in Fig. 4, the related DRC
rules include: metal-to-metal shorts, spacing rules corresponding to parallel run lengths, forbidden
regions extending from line ends, and minimum spacing requirements around the edges.

2.2.2 Routing. In the physical design process, routing is a crucial step.The specific routing flow is
illustrated in Fig. 5. In the GR stage, the global router assigns routing paths for each net onto a grid
structure composed of GCells, based on the macro layout of the chip, ensuring that all pins in each
net are covered [21]. GR primarily uses a coarse grid graph and guides subsequent detailed routing.
To make better use of GR information and bridge the gap between global and detailed routing, the
core idea of track assignment is to plan long-distance routing paths across GCells during global
routing.This reduces the search space for detailed routing and confines it within individual GCells,
accelerating the DR process and improving overall routing efficiency. Once the track assignment
is completed, DR is carried out within each GCell to interconnect all the pins [22].

During DR, the nets within the same GCell are connected. In Fig. 5(c), the pink global routing
guidance areas illustrate four track assignment (TA) wires. Two orange and two yellow wires
belong to different nets.The routing results for different nets can cause DRVs, such as short circuits,
which are highlighted in red in the figure.The initial routing introduces DRVs.Therefore, these two
nets need to be rerouted. In routing iterations, an A*-based routing algorithm guides the path based
on cost.TheCostDRCmetric quantifies DRVs, and routing paths can be strategically adjusted based
on this to mitigate DRVs during the detailed routing stage. Fig. 5(d) shows the routing solution
as adjusted in the next iteration. The paths of the orange and yellow nets have been modified,
effectively eliminating the previous DRV.

2.2.3 ResNet. DRVs are typically calculated at the grid level, which closely resembles pixel-level
classification problems in image segmentation, where classic convolutional neural networks (CNNs)
are often used as the backbone for machine learning models in these tasks. In the domain of im-
age segmentation, ResNet [23] has emerged as one of the most influential architectures since its
introduction in 2016. The core innovation of ResNet lies in its residual learning framework, which
addresses the vanishing gradient problem through skip connections while enabling the training
of substantially deeper networks. These characteristics make ResNet particularly suitable for seg-
mentation tasks, as it can effectively preserve spatial information through its hierarchical feature
extraction process. Building upon this foundation, we adopt ResNet-34 as the backbone architec-
ture for our DRV prediction model.

Fig. 6 illustrates the ResNet-34 architecture for image classification and consists of several key
components: an initial convolutional layer followed by max pooling, and several main residual

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

XXX:8 Yifan Li, Ruizhi Liu, Zhisheng Zeng, Zengrong Huang, Zhipeng Huang, Dongbo Bu, and Xingquan Li

Conv + ReLU

Pooling

W

H

Input

Features

(C×W×H)

Output

W/2

Conv + ReLU

Input

H/2 H/4

W/4

H/8

W/8

H/16
W/16

1
1

Residual
C

o
n

v
 +

R
eL

U

C
o

n
v

R
eL

U

+

× 2 FFN + Softmax

C = 64 C = 128 C = 256 C = 512

Fig. 6. The vanilla ResNet-34 architecture.

blocks with varying numbers of residual units (e.g. 2-6). The structure of ResNet used in image
segmentation also adheres to the deep convolutional neural network design, while eliminating
the final fully connected layer and incorporating the integration of upsampling layers in the latter
part of the network to restore spatial dimensions. Each residual block contains 2-6 residual units,
where each unit implements skip connections that bypass two or three convolutional layers.These
skip connections enable the network to learn residual functions rather than direct mappings, effec-
tively addressing the vanishing gradient problem. The architecture maintains spatial information
through its hierarchical feature extraction process while progressively increasing the number of
filters in deeper layers.This design allows ResNet to capture both low-level and high-level features
effectively. As a result, ResNet is particularly well-suited for DRV prediction tasks in chip physi-
cal design, as it can effectively model complex spatial patterns while maintaining computational
efficiency through its depth and residual learning framework.

2.2.4 RCCA. The recurrent crisscross attention (RCCA)module enhances long-range dependency
modeling through a bidirectional attention mechanism that computes orthogonal affinities in hori-
zontal and vertical directions in feature space [24].This dual-path architecture enables each spatial
position to interact with all others through attention chains, overcoming the locality constraints of
traditional convolutions. Its recurrent nature further strengthens this capability through iterative
attention computations, making RCCA particularly effective in capturing complex spatial patterns,
which has been demonstrated in previous research on PCB thermal distribution prediction [25]. For
DRV prediction, RCCA proves particularly valuable bymodeling the sparse yet spatially correlated
nature of DRVs. It effectively detects distributed violation patterns beyond standard convolutional
receptive fields, addressing a key limitation in traditional DRV prediction approaches.

2.2.5 Channel Transformer. Transformer architectures, originally developed for natural language
processing, have shown remarkable success in capturing long-range dependencies and modeling
complex relationships through self-attention mechanisms [26]. Building upon this foundation, the
channel transformer introduces a novel approach to model cross-channel feature interaction by es-
tablishing dynamic relationships across different feature channels through attention-based mech-
anisms. In contrast to conventional methods that process information across different channels
either independently or through linear weighting, the Channel Transformer employs the multi-
head attention mechanism to compute global dependencies among all channels, enabling compre-
hensive and cross-channel information exchange. The multi-head attention mechanism captures

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

AiDRC: Accelerating Detailed Routing by AI-Driven Design Rule Violation Prediction and Checking XXX:9

Fig. 7. The overall flow framework of AiDRC, which composes of two parts: 1) AiDRC prediction at initial
detailed routing; 2) AiDRC checking during detailed routing.

both local and global channel interactions, while the parallel processing architecture ensures ef-
ficient computation of complex relationships. This capability has been demonstrated in various
studies, such as time-series forecasting [27], medical image segmentation [28], and 3D Object De-
tection [29]. It is also crucial for DRV prediction, where diverse features from layout and net need
to be effectively synthesized. By facilitating comprehensive information fusion across different
feature representations, the channel transformer overcomes the limitations of incomplete feature
integration in traditional DRV prediction approaches.

2.3 AiDRC Framework
Our overall framework is illustrated in Fig. 7. The AiDRC framework consists of two modules:
1) AiDRC prediction at initial detailed routing; and 2) AiDRC checking during detailed routing.
For the AiDRC prediction module, we feed some features extracted from pre-detailed routing into
AiDRC, and then we predict the DRV results of the first round of detailed routing. The predicted
DRV results can be used to guide the first round of detailed routing or offer routability evaluation
for the design steps before detailed routing. For the AiDRC checking module, we feed the features
extracted from the results of the previous round of detailed routing, and then we can obtain the
DRV checking results from AiDRC checking module. The DRV results obtained by the AiDRC
checking module can be used to guide the next round of detailed routing instead of calling the
traditional DRC engine.

In the data preparation phase, we first use an open-source routing tool (the routing tool in
iEDA [30]) to perform automated routing on the collected designs. The LEF and DEF files are
processed as inputs for the tool. Initially, the entire layout area is divided into a grid of GCells. In

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

XXX:10 Yifan Li, Ruizhi Liu, Zhisheng Zeng, Zengrong Huang, Zhipeng Huang, Dongbo Bu, and Xingquan Li

this work, we focus on the DRV prediction during the detailed routing, and the features used in this
work are extracted from the track assignment (TA) results after global routing (GR).These features
are directly obtained from the post-TA layout results. Some basic features among GCell can be
directly obtained, such as pin shapes, pin access points, routing blockages, TA wires, and routing
tracks. Furthermore, to achieve a better prediction result, we extract more features, including the
bounding box of each net, the overlap region between two different bounding boxes, and the points
and lines of the Hanan grid. Details of the feature extraction process are discussed in Section 3. In
addition, the DRVs reported by the traditional DRC tool are used as labels, which correspond to
the extracted feature images. In summary, some information extracted from the TA stage and the
post-routing DRC results serves as the input features and labels, respectively, for the predictive
model.

In the model construction and training phase, the obtained labels and corresponding features
are processed to create the specified dataset. The whole training flow is divided into two stages:
the classification problem of the DRV existence, and the fitting problem of the DRV location. Since
binary classification for DRV existence is a well-established technique, the focus here is on select-
ing data with violations, allowing the model to concentrate on predicting their spatial distribution
[10]. This improves model accuracy while reducing training time. The labeled dataset is randomly
split into training and validation datasets. The training set is used for model learning, guiding the
training process of the DRV predictor, while the validation set is used to evaluate the performance
of the trained predictor. The model parameters are iteratively adjusted and optimized until the
model performance reaches an acceptable level and meets the expected convergence criteria.

During the inference process, the same features are extracted from the target design and fed
into a fine-grained model trained to focus on violation locations. The model predicts the specific
distribution of DRVs, allowing designers to estimate DRC status before detailed routing. On one
hand, the trained AiDRC model can be used to predict accurate routability before detailed routing.
On the other hand, integrating the trained AiDRC model into routing iterations enhances detailed
routing. Using the trained AiDRC model in detailed routing can improve the routing quality and
reduce time spent on subsequent routing iterations.

3 FEATURE SELECTION
Different features capture various aspects of the design layout, such as size and spacing, each of
which may have varying impacts on DRV prediction results. Therefore, extracting and selecting
proper features related to DRV is critical, which provides better insightful information within the
design layout [31]. To apply the prediction model for DRV detection, we preprocess the extracted
features into feature images. High-resolution feature images capture the exact location and shape
of each pattern. These features within the GCells are represented using a 2D-pixel matrix with
values of 0, 1. If a pattern falls within theGCell area, the corresponding pixels are set to 1; otherwise,
they remain 0. For DRV labels, similarly, the violation areas within the GCell are marked with
pixels set to 1, while other regions remain 0. Designing effective features significantly influences
prediction accuracy. The key idea is to extract as much valuable information as possible from the
layout results. In addition to directly extracted features like pins or blockages, the status of routing
paths has a strong correlation with DRVs.

However, the TA stage alone does not provide comprehensive net information, making addi-
tional feature extraction necessary. Therefore, we incorporate more pre-routing information into
our features. To account for the correlation between wiring layers, the lower metal layer serves as
the foundation for upper metal layer routing. For example, in M2 layer prediction and check, the
characteristics of M1 and M2 layers are taken into account. All extracted and selected features are
shown in Fig. 8, and the detailed descriptions are listed as follows:

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

AiDRC: Accelerating Detailed Routing by AI-Driven Design Rule Violation Prediction and Checking XXX:11

1

2

2

: Gcell

: Blockage

: Pin

: PA point

: Track

: TA wire

: Hanan line

: BBox

: Overlap

: Hanan point

3

32

1

(a) (b) (c)

: Std cell

Fig. 8. (a) Features directly extracted in a GCell (including three nets: No. 1, 2, 3). (b) BBox and overlap
features extracted in a GCell (including three nets: No. 1, 2, 3). (c) Hanan line and point features extracted
in a GCell (corresponding to net No. 2).

(1) Pin: We traverse and retrieve the pins contained within the GCell, generating a pin feature
map. The distribution and shape of the pins are crucial for determining access points and
potential routing blockages. The complex joint effects of pin shapes and nearby blockages is
an important cause of DRVs.

(2) Pin Access Point (PA point): PA point refers to the coordinate generated by the pin access
tool. We create a square centered on each PA point, with the side length of the square deter-
mined by the minimum width of the metal line, as shown in Fig. 8(a). Each square is then
mapped to its corresponding GCell.

(3) Blockage: Blockages refer to obstacles in the environment that are key factors in causing
DRVs during routing. The generation of blockage feature maps follows the same method
as the pin feature maps described above, which helps identify areas where routing is con-
strained.

(4) Track Assignment Wire: After track assignment, pre-routed wires across GCells are de-
termined, directly affecting the number of available routing tracks. It actively participates
in subsequent routing processes and directly impacts the quality of the routing results.

(5) Track: During the routing process, a track is a path on which routing must occur. Routing
must be performed along the track, meaning the track serves as a routing resource.

(6) Bounding Box (BBox): The bounding box of a net represents the minimum enclosing rect-
angular area containing all pins of this net. The BBox of a net outlines its local routing area,
providing potential areas where routing may lead to violations.

(7) Overlap: Overlap of bounding boxes refers to the overlapping part of bounding boxes cor-
responding to different nets. Multiple routing paths from different nets may overlap in this
region, indicating a high-risk violation region.

(8) Hanan Point: Hanan points represent potential corner points, which are likely locations
for vias. The six points in Fig. 8(c) are the Hanan points of net 2 in Fig. 8(a).

(9) Hanan Line: The Hanan lines connect various points within the routing area, forming the
basis for future routing. Hanan line is either horizontal or vertical, and we extend it into a
rectangle that meets the minimum line width requirement. Both Hanan points and Hanan
lines provide clues for potential routing.

To address the specific needs of our AiDRC prediction model, we examine the factors that lead
to DRVs during the DR stage. To further investigate the importance of different features on recog-
nition of DRVs, we calculate the absolute gradient values of model outputs for each input channel

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

XXX:12 Yifan Li, Ruizhi Liu, Zhisheng Zeng, Zengrong Huang, Zhipeng Huang, Dongbo Bu, and Xingquan Li

0.0% 5.0% 10.0% 15.0% 20.0%

Bbox

Hanan point

Overlap

Hanan line

PA Point

Track

TA wire

Blockage

Pin

0.0% 5.0% 10.0% 15.0% 20.0%

Bbox

Hanan point

Overlap

Hanan line

Track

TA wire

PA Point

Blockage

Pin

(a) (b)

M1 M2

Fig. 9. Comparison of the impact of all features.(a) Case of first metal layer. (b) Case of second metal layer.

to measure the contribution of each channel of feature to DRV recognition. We accumulate and
average gradients across all batches of GCell data to obtain overall importance scores, and normal-
ization is also performed. As shown in Fig. 9, the contribution ratio of different input features is
reflected. It can be observed that the features of both M1 and M2 layers contribute to DRV predic-
tion. In contrast, the information on the M2 layer itself is more important. From the comparison of
different feature types, it can be found that the influence of the features extracted from the layout
itself is significantly higher than the further expanded features. This is because, compared with
the inherent features, the expanded features are an estimate of the possible location of the wire.
Among them, the pin of a net is the most important feature causing DRV.

Furthermore, to train our AiDRC checking model during detailed routing, two features of the
routed wires and vias are extracted and fed into the model. Geometric attributes, such as wire
width, spacing, jogs, and bends, can lead to issues like shorts, spacing violations, and width-related
constraints. The intricate metal traces within the constrained layout plane play a crucial role in
determining design rule compliance. Additionally, vias typically expand in both directions along
the routing path due to enclosure rules, which define the required metal overlap around the via
for reliable electrical connectivity. This expansion, while necessary for manufacturability, can lead
to spacing violations when vias are placed too close to adjacent interconnects or other vias.

4 MODEL ARCHITECTURE
4.1 Network Overview
For the DRV prediction model in Fig. 10, we employ a modified ResNet as the backbone of our
model and combine it with the feature fusion block, including the recurrent crisscross attention
module (RCCA) and channel transformer (CT), to build the prediction network. It receives 18 chan-
nels of different GCell features as input, while the output is a single-channel map indicating the
positions of the predicted DRV region. To retain more accurate spatial details of feature maps from
the GCell, we only apply one down-sampling layer and one up-sampling layer in the ResNet back-
bone. Every two residual blocks are grouped in one pair. Using 5 × 5 convolution, the input layer
first expands the 18-dimensional features to 32 channels, then progressively increases the channels
to 256 by doubling at each residual block, thereby encoding rich information from the input fea-
tures. After four pairs of residual blocks, a convolutional layer is applied to obtain the feature map
𝑋 of dimension reduction.Then,𝑋 is fed into the feature fusion block, which consists of one RCCA
module and one CT module. In the RCCAmodule,𝑋 is fed into two sequential crisscross attention
(CCA) modules to generate a new feature map 𝑌 , aggregating non-local spatial information. In

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

AiDRC: Accelerating Detailed Routing by AI-Driven Design Rule Violation Prediction and Checking XXX:13

C
ri

ss
cr

o
ss

 a
g

g
re

g
a

ti
o
n

Q

K

V

S
o

ft
m

a
x

Crisscross attention module × 2

C
h

a
n

n
el

 e
m

b
ed

d
in

g
Q

K

V

M
u

lt
i-

h
ea

d

se
lf

-a
tt

en
ti

o
n

A
d

d
 &

 L
a

y
er

 n
o

rm

F
ea

tu
re

 e
n

h
a

n
ce

m
en

t

A
d

d
 &

 L
a

y
er

 n
o

rm

Channel transformer

C
o

n
ca

t
&

 G
a

te
d

A
d

d

+

F
u

se
d

 f
ea

tu
re

Input features

Feature fusion

block (256)

Output DRC hotspots

Feature fusion

block (256)

18×56×56

32×56×56

Deconvolution

32×28×28

64×28×28

128×28×28

256×28×28 256×28×28

256×28×28

128×28×28

64×28×28

64×56×56

32×56×56

1×56×56

K = 5

S = 1

P = 2

K = 5

S = 1

P = 2

K = 5

S = 1

P = 2

K = 5

S = 1

P = 2

K = 5

S = 1

P = 2

K = 5

S = 1

P = 2

K = 5

S = 1

P = 2

K = 5

S = 1

P = 2

K = 2

S = 2

K = 2

S = 2

18×56×56

Intra-GCell

features

256

channels

H = 4
1
×1

 c
o

n
v

1
×

1
 c

o
n

v

Dot product

Element-wise multiplication

Reduce to

32 channels

Fig. 10. The architecture of AiDRC prediction model.

24×56×56
O

u
tp

u
t

D
R

C
 h

o
ts

p
o

ts

In
p

u
t

fe
a

tu
re

s

D
ec

o
n

v
o

lu
ti

o
n

1×56×56128×28×28

K = 5

S = 1

P = 2

64×28×28

K = 5

S = 1

P = 2

32×56×56

K = 5

S = 1

P = 2

256×28×28

K = 5

S = 1

P = 2

32×28×28

K = 2

S = 2

256×28×28

K = 5

S = 1

P = 2

128×28×28

K = 5

S = 1

P = 2

64×28×28

K = 5

S = 1

P = 2

32×56×56

K = 5

S = 1

P = 2
K = 2

S = 2

32×56×56

Fig. 11. The architecture of AiDRC checking model.

the CT module, the multi-head attention mechanism captures local and global cross-channel in-
teractions from the channel embedding vectors, while the parallel processing architecture ensures
efficient computations. The output 𝑍 of the channel transformer and the 𝑌 from RCCA will be
fused through a learnable gating mechanism, with their combined features further enhanced via
a residual connection. Two feature fusion blocks are added and followed by another four pairs of
residual blocks with 5 × 5 convolution. The number of channels gradually decreases from 256 to
32 by halving at each residual block, culminating in a final reduction to 1 by the output layer for
prediction. The output feature map undergoes a sigmoid operation to obtain the final predicted
DRV map.

For the DRV checking model in Fig. 11, we employ the ResNet-34 architecture [23] and apply
only one down-sampling layer and one up-sampling layer to balance computing efficiency and
accurate spatial details. It receives 18 channels of features from different layers of GCell as input,
and the output is a single-channel map indicating the positions of the predicted post-DR intra-
GCell DRV region. This model architecture ensures efficient inference while achieving accurate
DRV checking with the help of ResNet design.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

XXX:14 Yifan Li, Ruizhi Liu, Zhisheng Zeng, Zengrong Huang, Zhipeng Huang, Dongbo Bu, and Xingquan Li

4.2 Recurrent Crisscross Attention
SpatialAttentionMechanism:TheRecurrent crisscross attention (RCCA)mechanism is adopted
in our network to capture long-range dependencies in feature maps and aggregate full-GCell spa-
tial information by sequentially computing two CCA along both horizontal and vertical directions
for each pixel [24]. As illustrated in Fig. 10, the RCCA module first reduces the input channel di-
mension through a 5 × 5 convolution layer with batch normalization, followed by the core CCA
operations.

Given an input feature map 𝑋 ∈ R𝐶×𝑊 ×𝐻 , where𝐶 is the number of channels,𝑊 and 𝐻 are the
width and height respectively, the CCA starts by computing queries, keys, and values using 1 × 1
convolutions with weight matrices𝑊𝑞 ,𝑊𝑘 , and𝑊𝑣 :

𝑄 =𝑊𝑞 ∗ 𝑋, 𝐾 =𝑊𝑘 ∗ 𝑋, 𝑉 =𝑊𝑣 ∗ 𝑋 (1)

where ∗ denotes the convolution operation and𝑄,𝐾 ∈ R𝐶
′×𝑊 ×𝐻 and𝑉 ∈ R𝐶×𝑊 ×𝐻 with𝐶′ = 𝐶/8

for computational efficiency.
Crisscross Spatial Aggregation: For each pixel (𝑖, 𝑗) in the input feature map 𝑋 , we use K(𝑖, 𝑗)

to denote the set of feature vectors extracted from 𝐾 which are in the same row or column with
position (𝑖, 𝑗) and K(𝑖, 𝑗) ∈ R(𝑊 +𝐻−1)×𝐶′ , and compute the horizontal attention weights 𝐴𝐻𝑖,𝑗 by
applying the softmax function to the dot product of the query at row 𝑖 and the key at position
(𝑖, 𝑗):

𝑑 (𝑖, 𝑗),𝑘 = 𝑄 (𝑖, 𝑗) · K𝑇(𝑖, 𝑗),𝑘 (2)
where𝑑 (𝑖, 𝑗),𝑘 ∈ 𝐷 is the degree of correlation between𝑄 (𝑖, 𝑗) andK(𝑖, 𝑗),𝑘 , 𝑘 = [1, ...,𝑊 +𝐻−1]. Note
that 𝐷 ∈ R(𝐻+𝑊 −1)×(𝑊 ×𝐻) , we compute the attention map 𝐴 by applying the softmax function to
𝐷 . We also use V(𝑖, 𝑗) to denote the collection of feature vectors extracted from 𝑉 that are in the
same row or column with position (𝑖, 𝑗), then the crisscross spatial information can be aggregated
by:

𝑌(𝑖, 𝑗) =
𝑊 +𝐻−1∑
𝑘=0

𝐴 (𝑖, 𝑗),𝑘V(𝑖, 𝑗),𝑘 + 𝑋 (𝑖, 𝑗) (3)

Recurrent Processing: The output feature map 𝑌 ∈ R𝐶×𝐻×𝑊 is then returned as the result of
the CCA mechanism. As shown in Fig. 10, the CCA operation is applied recurrently for two iter-
ations to ensure comprehensive spatial information aggregation. After two CCA operations, the
information of positions in different rows and columns from the coordinates (𝑖, 𝑗) can be aggre-
gated, thus allowing the learning of long-range spatial correlation. The final output is processed
through another 5 × 5 convolution with batch normalization and a dropout rate of 0.1 for regular-
ization.

4.3 Channel Transformer
Inter-Channel Attention: Beyond RCCA, we apply a modified channel transformer mechanism
to enable inter-channel feature fusion [28]. As depicted in the right branch of Fig. 10 and detailed
in the channel transformer architecture diagram, this module processes channel-wise correlations
through a multi-head self-attention mechanism with convolutional feature enhancement.

Given the output feature map 𝑌 ∈ R𝐶×𝑊 ×𝐻 from CCA, channel-wise correlations are captured
through the multi-head self-attention mechanism. We first compute the query, key, and value pro-
jections using learnable parameters:

𝑄𝑐 =𝑊𝑐𝑞 ∗ 𝑋, 𝐾𝑐 =𝑊𝑐𝑘 ∗ 𝑋, 𝑉𝑐 =𝑊𝑐𝑣 ∗ 𝑋 (4)

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

AiDRC: Accelerating Detailed Routing by AI-Driven Design Rule Violation Prediction and Checking XXX:15

where𝑊𝑐𝑞,𝑊𝑐𝑘 ,𝑊𝑐𝑣 ∈ R𝐶×𝐶 are 1×1 convolution kernels. The input tensor is reshaped to 𝑋 ∈
R(𝑊 ×𝐻)×𝐵×𝐶 (where 𝐵 is batch size) for multi-head attention computation.
Multi-Head Attention Processing: The scaled dot-product attention computes channel affin-

ity matrices:

Attention(𝑌) = Softmax
(
𝑄𝑐𝐾

𝑇
𝑐√

𝑑𝑘

)
𝑉𝑐 ∈ R(𝑊 ×𝐻)×𝐵×𝐶 (5)

where 𝑑𝑘 = 𝐶/num_heads is the dimension scaling factor with num_heads = 4. This computation
is performed in parallel across ℎ attention heads, whose outputs are concatenated and reprojected
to form the final channel attention features. The normalized residual connection is implemented
as:

𝑍 = LayerNorm(𝑋 + Reshape(Attention(𝑋))) (6)
Convolutional Feature Enhancement:A convolutional feature enhancement block (ConvFE)

with channel expansion replaces the standard feed-forward network, as shown in the FFN compo-
nent of the architecture:

ConvFE(𝑍) =𝑊𝑐𝑜𝑛𝑣2 ∗ 𝜎 (𝑊𝑐𝑜𝑛𝑣1 ∗ 𝑍) where
{
𝑊𝑐𝑜𝑛𝑣1 ∈ R4𝐶×𝐶×1×1

𝑊𝑐𝑜𝑛𝑣2 ∈ R𝐶×4𝐶×1×1
(7)

𝑍 ′ = LayerNorm(𝑍 + ConvFE(𝑍)) (8)
Dual Attention Feature Fusion:The dual attention features (𝑌 from RCCA and 𝑍 ′ from chan-

nel transformer) are then fused through parametric gating 𝐺 , as illustrated in the fusion mecha-
nism of Fig. 10:

𝐹 = Concat(𝑌, 𝑍 ′) ∈ R2𝐶×𝑊 ×𝐻 (9)

𝐺 = Sigmoid(𝑊𝑔 ∗ 𝐹) with𝑊𝑔 ∈ R𝐶×2𝐶 (10)

𝑍𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑋 +𝐺 ⊙ (𝑌 + 𝑍 ′) (11)
where ⊙ denotes element-wise multiplication. This architecture effectively integrates spatial pat-
terns from CCA with channel-wise dependencies learned through transformer operations, estab-
lishing comprehensive feature representations for DRV prediction as demonstrated in the overall
AiDRC architecture.

4.4 Model Training
The loss function significantly impacts the effectiveness of model training. Since this work trans-
forms the DRV prediction problem into a violation prediction problem, simply using a loss func-
tion designed for classification problems cannot meet the design requirements. As shown in Eq.
(14), our loss function comprises the focal loss, the dice loss, and a specially designed loss that
contributes to precision improvement.

We adopt focal loss ℓ𝑓 𝑜𝑐𝑎𝑙 [32] to mitigate the imbalance between positive and negative class
samples and the imbalance between simple and complex samples in the training data. Let 𝑝𝑡 be
the predicted probability for the ground truth class 𝑡 , ℓ𝑓 𝑜𝑐𝑎𝑙 is defined as:

ℓ𝑓 𝑜𝑐𝑎𝑙 = −𝛼𝑡 (1 − 𝑝𝑡)𝛾 log(𝑝𝑡) (12)
where 𝛼𝑡 is the weighting factor while 𝛾 is the parameter that focuses on reducing the loss of
ill-classified samples. In this work, we use 𝛼𝑡 = 0.75 and 𝛾 = 2.0.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

XXX:16 Yifan Li, Ruizhi Liu, Zhisheng Zeng, Zengrong Huang, Zhipeng Huang, Dongbo Bu, and Xingquan Li

We also adopt the dice loss ℓ𝑑𝑖𝑐𝑒 to measure the similarities between the predicted candidate
points and the ground truth. Using 𝑝𝑥𝑦 to represent the probability of a pixel at position (𝑥,𝑦)
predicted as a candidate point and 𝑔𝑥𝑦 to represent the ground truth, ℓ𝑑𝑖𝑐𝑒 can be expressed as:

ℓ𝑑𝑖𝑐𝑒 = 1 −
2
∑
𝑥,𝑦 𝑝𝑥𝑦𝑔𝑥𝑦 + 𝜖∑

𝑥,𝑦 𝑝𝑥𝑦 +
∑
𝑥,𝑦 𝑔𝑥𝑦 + 𝜖

(13)

where 𝜖 is a small constant added to avoid division by zero.
Additionally, we introduce a custom loss ℓpre specifically designed to improve the precision of

the model’s predictions. Precision is a critical metric in tasks where minimizing false positives is
essential.This loss penalizes themodel for predicting violation in the GCell where the ground truth
is negative, thereby encouraging the model to be more conservative and accurate in its predictions.
Given the predicted probability map 𝑝𝑥𝑦 and the ground truth 𝑔𝑥𝑦 , the custom loss ℓpre is defined
as:

ℓ𝑝𝑟𝑒 =

∑
𝑥,𝑦 𝑝𝑥𝑦 · (1 − 𝑔𝑥𝑦) + 𝜖∑

𝑥,𝑦 𝑝𝑥𝑦 + 𝜖
where 𝜖 is a small constant added to avoid division by zero.

Then the trainable model 𝜃 is determined at the training stage by minimizing the loss function
as follows:

L(𝜃) = 𝑐 𝑓 𝑙 · ℓ𝑓 𝑜𝑐𝑎𝑙 + 𝑐𝑑𝑖 · ℓ𝑑𝑖𝑐𝑒 + 𝑐𝑝𝑟𝑒 · ℓ𝑝𝑟𝑒 (14)
where 𝑐 𝑓 𝑙 , 𝑐𝑑𝑖 , 𝑐𝑝𝑟𝑒 represent the weights of corresponding loss items. In this work, we use 𝑐 𝑓 𝑙 = 5.0,
𝑐𝑑𝑖 = 1.0 and 𝑐𝑝𝑟𝑒 = 2.0.

5 EXPERIMENTAL RESULTS
5.1 Dataset Generation

Table 1. Statistics on the design set “ysyx” (28nm).

Benchmark
Statistics

#Instances #Nets #GCells #Util

ysyx_0 88860 86072 168510 0.65
ysyx_1 95581 92630 169332 0.61
ysyx_2 97207 98065 191406 0.65
ysyx_3 145160 141757 231842 0.60
ysyx_4 283285 275313 573806 0.70
ysyx_5 244476 239401 510510 0.50
ysyx_6 350494 341425 718256 0.70
ysyx_7 379679 371241 771762 0.50
ysyx_8 469977 457585 1161006 0.50
ysyx_9 453875 444934 912980 0.50

• ysyx is a RISC-V processor chip talent plan.

Training and testing data were generated from the “ysyx” chip dataset. Our experiments were
conducted using data from a total of 10 chip designs based on 28nm technology. Table 1 provides
detailed information on the 10 “ysyx” designs, including various specifications such as the number
of standard cells, nets, GCells, and overall resource utilization. For each design, we used the track
assignment tool from the open-source EDA platform iEDA to generate iroute data, which is stored
in the corresponding GCells as input features for the model [33]. The routing areas are covered

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

AiDRC: Accelerating Detailed Routing by AI-Driven Design Rule Violation Prediction and Checking XXX:17

by the same GCell across different routable layers as a whole. Multichannel feature maps were
generated for each GCell to facilitate training. The feature extractor was implemented using both
PyTorch and the Boost Geometry library in C++ and Python. Subsequently, the detailed router and
DRC tools from iEDA were employed to complete the detailed routing tasks within each GCell
[30]. The resulting violation distribution data are used to generate the corresponding label data by
calling AiEDA (an open-source AI for EDA library) [34].

To ensure fairness and avoid data leakage, design cases generated from the same original design
were not used for both training and testing, as they may be very similar. To address this, we
implemented a k-fold cross-validation scheme to separate the training and testing data. Specifically,
we employed a 10-fold cross-validation approach, which can be formally defined as:

For 𝑘 = 10, fold 𝑖 ∈ 1, 2, ..., 𝑘 : D (𝑖)
test = C𝑖 , D (𝑖)

train =
∪
𝑗≠𝑖

C𝑗 (15)

where C𝑖 represents the dataset from the 𝑖-th benchmark circuit,D (𝑖)
train is the training set for fold 𝑖 ,

and D (𝑖)
test is the corresponding test set. In this k-fold validation setup, data from 9 of the 10 bench-

mark circuits are used for training, while the remaining 1 circuit is used for testing. We repeat
the experiment 10 times, each time using data from a different benchmark circuit for testing, with
the rest used for training. This k-fold cross-validation ensures that the testing circuits are com-
pletely unseen by the training data and provides a robust evaluation of our model’s generalization
capability across different chip designs.

5.2 Evaluation on DRV Prediction
The design rule violation prediction model was implemented using Python and Pytorch on a Linux
machine with two NVIDIA A100 GPUs, 4 Intel Xeon Platinum 8380 CPUs at 2.3 GHz, and 1TB of
RAM. The model was built with the following configurations: We used the AdamW optimizer
with 𝛽 coefficients of (0.95, 0.999) and a weight decay coefficient of 0.001. A cosine annealing
scheduler [35] was employed to control the learning rate, which decayed from 5e-4 to 1e-6. For
model training, each model was trained for 100 epochs.The batch size was set to 128. In our model,
ReLU was used as the activation function.

After training the model, evaluation of its performance is especially important in the context of
DRV prediction because the DRV dataset is highly imbalanced; only a small fraction of regions are
DRVs [35]. Performance metrics such as accuracy are no longer effective measures of predictive
performance due to the significant imbalance between the number of positive samples (violations)
and negative samples (non-violations). As long as the model predicts most samples as non-DRV
samples, the accuracy metric can easily be high [35]. Therefore, selecting a suitable evaluation
metric is crucial to effectively reflecting the predictive ability of the model. The DRV prediction
task can be transformed into an image detection or segmentation task in the field of computer
vision because the output is an activation tensor map of the same size as the original input feature
map [31]. Each element in the output binary tensor map can be regarded as a binary classification,
of which the commonly used metrics are derived from the classification confusion matrix [17].The
confusion matrix contains true positives (TP), false positives (FP), true negatives (TN), and false
negatives (FN). In our experiments, precision and recall are used to evaluate the effectiveness of
the learningmodel. Precision is calculated as TP / (TP + FP). Precision focuses on the correctness of
samples predicted as positive, rather than the proportion of all correctly predicted samples. Recall
is calculated as TP / (TP + FN). Recall emphasizes the model’s ability to correctly identify positive
samples.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

XXX:18 Yifan Li, Ruizhi Liu, Zhisheng Zeng, Zengrong Huang, Zhipeng Huang, Dongbo Bu, and Xingquan Li

(a) (b)

Fig. 12. (a) Examples of design rule violation labels and corresponding prediction results in GCells. (b) Com-
parison of average ROC curves of different models.

Since the issue of false alarms (i.e., non-violations predicted as violations, or violations predicted
as non-violations) needs to be carefully considered, we evaluate the performance of the prediction
model using the area under the ROC curve (AUC). The AUC-ROC curve plays an important role in
assessing the performance of classification methods [35]. ROC is a probability curve that describes
the trade-off between the true positive rate (TPR) and the false positive rate (FPR) across various
classification thresholds. TPR is the proportion of correctly classified positive samples among all
actual positive samples (i.e., recall), while FPR is the proportion of negative samples incorrectly
predicted as positive among all actual negative samples. AUC represents the model’s ability to
distinguish between categories. An AUC of 1 on the ROC curve indicates perfect prediction, while
random guessing results in an AUC of 0.5. The strength of a prediction model is reflected in its
higher AUC, indicating that the model can predict both true positives and true negatives with
higher accuracy.

In the evaluation experiment for the DRV prediction task, we compared traditional machine
learning models, such as Fully Convolutional Networks (FCN), based on classic convolution ar-
chitectures. The FCN method is one of the popular approaches for the DRV prediction problem
[11]. It does not include a fully connected (FC) layer at the end of the model. FCN can adapt to
input images of various sizes and generate outputs with a size identical to the input. It outputs an
image of the same size as the original input, making it suitable for pixel-level binary classification
problems. We also conducted a comprehensive evaluation by incorporating three state-of-the-art
baselines: RouteNet [11], DRC_Pred_Net [19], and XAI_RoutOpt [7]. These models represent re-
cent advances in learning-based prediction of DRV and routing optimization, providing a more
robust benchmark for evaluation. We excluded the original U-Net baseline since RouteNet and
DRC_Pred_Net were developed upon the original U-Net architecture, and their performances ef-
fectively represent the potential of modified U-Net. To ensure a fair comparison, we adopted the
original network architectures of these baselines or with minimal modifications (removing only
the final flattening and fully connected layers to adapt to our task’s input-output requirements),
whilemaintaining consistent loss functions and training parameters across all models. Table 2 sum-
marizes the performance of the models across ten benchmark designs. Four objective evaluation

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

AiDRC: Accelerating Detailed Routing by AI-Driven Design Rule Violation Prediction and Checking XXX:19

Ta
bl
e
2.

Th
e
co
m
pa

ri
so
n
re
su
lt
s
of

di
ff
er
en
t
D
R
V
pr
ed
ic
ti
on

m
od

el
s
FC

N
,R

ou
te
N
et

[1
1]
,D

R
C
_P

re
d_

N
et

[1
9]
,X

A
I_
R
ou

tO
pt

[7
]
an

d
A
iD
R
C
.

D
es
ig
n

FC
N

Ro
ut
eN

et
[1
1]

D
RC

_P
re
d_

N
et

[1
9]

XA
I_
Ro

ut
O
pt

[7
]

A
iD

RC
P

R
FP

R
A
UC

P
R

FP
R

A
UC

P
R

FP
R

A
UC

P
R

FP
R

A
UC

P
R

FP
R

A
UC

ys
yx

_0
0.4

41
0.4

25
0.0

08
0.9

25
0.6

44
0.6

10
0.0

06
0.9

77
0.6

75
0.6

23
0.0

05
0.9

83
0.6

36
0.6

09
0.0

07
0.9

80
0.
70

9
0.
63

5
0.
00

4
0.
98

4
ys

yx
_1

0.4
33

0.4
14

0.0
09

0.9
23

0.6
17

0.5
87

0.0
06

0.9
75

0.6
55

0.6
06

0.0
06

0.9
79

0.5
72

0.6
70

0.0
05

0.9
82

0.
70

1
0.
65

6
0.
00

4
0.
98

6
ys

yx
_2

0.4
43

0.4
10

0.0
08

0.9
05

0.6
23

0.6
08

0.0
05

0.9
68

0.6
81

0.6
72

0.0
05

0.9
83

0.6
42

0.6
78

0.0
06

0.9
83

0.
71

7
0.
68

0
0.
00

3
0.
99

0
ys

yx
_3

0.4
32

0.4
10

0.0
09

0.9
27

0.6
45

0.5
99

0.0
05

0.9
76

0.6
58

0.6
14

0.0
07

0.9
80

0.6
29

0.6
35

0.0
06

0.9
81

0.
68

7
0.
65

1
0.
00

6
0.
98

8
ys

yx
_4

0.4
21

0.4
37

0.0
10

0.9
25

0.6
02

0.6
14

0.0
07

0.9
81

0.6
44

0.6
24

0.0
06

0.9
81

0.5
90

0.
64

7
0.0

06
0.9

84
0.
67

6
0.6

15
0.
00

5
0.
98

5
ys

yx
_5

0.4
15

0.4
00

0.0
09

0.9
31

0.5
81

0.6
13

0.0
07

0.9
84

0.6
76

0.6
51

0.0
04

0.9
82

0.6
20

0.
70

1
0.0

04
0.9

88
0.
68

4
0.6

86
0.
00

4
0.
98

9
ys

yx
_6

0.4
04

0.3
88

0.0
09

0.9
21

0.6
06

0.5
63

0.0
05

0.9
71

0.6
95

0.6
50

0.0
05

0.9
85

0.6
48

0.
67

5
0.0

06
0.9

84
0.
70

5
0.6

57
0.
00

5
0.
98

7
ys

yx
_7

0.3
92

0.3
68

0.0
09

0.9
28

0.5
78

0.5
94

0.0
07

0.9
73

0.
68

4
0.6

69
0.0

05
0.9

82
0.6

11
0.
68

5
0.0

05
0.9

85
0.6

82
0.6

79
0.
00

5
0.
98

7
ys

yx
_8

0.4
36

0.4
05

0.0
08

0.9
38

0.6
04

0.6
33

0.0
08

0.9
76

0.6
67

0.6
90

0.
00

5
0.
98

5
0.6

20
0.6

92
0.0

07
0.9

82
0.
68

7
0.
69

4
0.0

06
0.9

84
ys

yx
_9

0.3
98

0.3
71

0.0
09

0.9
25

0.6
21

0.6
00

0.0
05

0.9
81

0.7
01

0.6
75

0.0
05

0.9
84

0.6
28

0.6
73

0.0
06

0.9
84

0.
71

2
0.
68

2
0.
00

4
0.
99

0

Av
er
ag

e
0.4

22
0.4

03
0.0

08
0.9

25
0.6

12
0.6

02
0.0

06
0.9

76
0.6

74
0.6

47
0.0

05
0.9

82
0.6

20
0.6

67
0.0

06
0.9

83
0.
70

6
0.
66

3
0.
00

5
0.
98

7

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

XXX:20 Yifan Li, Ruizhi Liu, Zhisheng Zeng, Zengrong Huang, Zhipeng Huang, Dongbo Bu, and Xingquan Li

metrics are used: “Precision (P)”, “Recall (R)”, “FPR”, and “AUC of ROC”. These metrics are com-
pared based on the balance between recall and precision, which is further elaborated in Section 5.3.
The important results in the table are highlighted in bold.

As shown in Table 2, our AiDRC method demonstrates superior performance across all eval-
uation metrics compared to all baselines. Specifically, AiDRC achieves the highest average AUC
of 0.987, outperforming XAI_RoutOpt (0.983), DRC_Pred_Net (0.982), RouteNet (0.976), and FCN
(0.925). The ROC curves in Fig. 12(b) clearly illustrate that AiDRC maintains consistently higher
true positive rates across all false positive rate ranges, indicating better discrimination capability.
Moreover, AiDRC shows the most balanced performance across different design cases (ysyx_0 to
ysyx_9), with consistently high precision (0.706 average) and recall (0.663 average) values, demon-
strating its robustness and generalizability, meaning it produces the most hits and the fewest
missed detections. At the same threshold of 0.5, our model also has a lower FPR, indicating a
lower rate of incorrect violation classifications.

Fig. 12(a) shows the comparison between the DRV prediction results based on our model and
the labels. It can be observed that the DRV regions correspond one-to-one with the violations in
the labels, proving that the model can accurately locate the violation regions. Fig. 12(b) shows the
AUC–ROC curve of the model comparison. Our model has the largest area under the curve with
an average value of 0.987, indicating that our model has better classification performance.

5.3 Accelerating Initial Detailed Routing by AiDRC Prediction
To further investigate the role of our AiDRC model, we integrated it into the routing tool (iRT)
[22] of iEDA to accelerate the detailed routing.The core of iRT is based on the A* algorithm, where
the cost map is generated by combining known costs and estimated costs. The formulation is as
follows:

𝐶𝑜𝑠𝑡𝑇𝑜𝑡𝑎𝑙 = 𝐶𝑜𝑠𝑡𝑁𝑜𝑑𝑒 +𝐶𝑜𝑠𝑡𝐾𝑛𝑜𝑤𝑛𝑊𝑖𝑟𝑒 +𝐶𝑜𝑠𝑡𝐾𝑛𝑜𝑤𝑛𝑉𝑖𝑎
+𝐶𝑜𝑠𝑡𝐾𝑛𝑜𝑤𝑛𝑆𝑒𝑙 𝑓 +𝐶𝑜𝑠𝑡𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑊 𝑖𝑟𝑒 +𝐶𝑜𝑠𝑡𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑉𝑖𝑎 (16)

𝐶𝑜𝑠𝑡𝑁𝑜𝑑𝑒 = 𝐶𝑜𝑠𝑡𝐹𝑖𝑥𝑒𝑑𝑅𝑒𝑐𝑡 +𝐶𝑜𝑠𝑡𝑅𝑜𝑢𝑡𝑒𝑑𝑅𝑒𝑐𝑡 +𝐶𝑜𝑠𝑡𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 (17)
The total cost is composed of several components. 𝐶𝑜𝑠𝑡𝑁𝑜𝑑𝑒 captures the intrinsic properties of
a node and consists of three parts: 𝐶𝑜𝑠𝑡𝐹𝑖𝑥𝑒𝑑𝑅𝑒𝑐𝑡 , which accounts for the influence of obstacles;
𝐶𝑜𝑠𝑡𝑅𝑜𝑢𝑡𝑒𝑑𝑅𝑒𝑐𝑡 , which reflects the impact of already routed regions; and𝐶𝑜𝑠𝑡𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 , which repre-
sents DRC violations. Predicted violations are also incorporated into𝐶𝑜𝑠𝑡𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 , thereby guiding
the router to avoid regions with a high likelihood of violations. In addition,𝐶𝑜𝑠𝑡𝐾𝑛𝑜𝑤𝑛𝑊𝑖𝑟𝑒 captures
the effects of wire length and direction preferences, 𝐶𝑜𝑠𝑡𝐾𝑛𝑜𝑤𝑛𝑉𝑖𝑎 represents the cost of inserting
vias when switching layers, and 𝐶𝑜𝑠𝑡𝐾𝑛𝑜𝑤𝑛𝑆𝑒𝑙 𝑓 accounts for special cases, such as discouraging
short non-preferred segments that may lead to DRC violations. Finally,𝐶𝑜𝑠𝑡𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑊 𝑖𝑟𝑒 is based on
the Manhattan distance to approximate the theoretical shortest wire length, while𝐶𝑜𝑠𝑡𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑉𝑖𝑎
considers the layer difference to represent the minimum required via cost.

In addition, for the iterative updates of cost map, the detailed routing functionality of iRT up-
dates the net after completing the routing of each net. It then recalculates factors such as non-
preferred direction routing, vias (layer changes), proximity to fixed obstacles, and overlaps with
existing routed wires. Moreover, DRVs are updated globally for each checking window. Therefore,
the cost map is dynamically updated based on the routing order within each checking window and
the movement of checking window. The method used to resolve DRVs in detailed routing is based
on redistributing routing resources with a cost penalty. For instance, methods like splitting and
rerouting are based on cost parameters. By optimizing cost parameters, iRT can improve the rout-
ing quality. Currently, based on the prediction model, the DRC cost parameters are incorporated

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

AiDRC: Accelerating Detailed Routing by AI-Driven Design Rule Violation Prediction and Checking XXX:21

(a) (b) (c)

Fig. 13. (a) Design rule violation prediction (red box) before DR. (b) Actual DRV generated after initial DR.
(c) Initial DR after iteration based on DRV prediction.

Table 3. Statistics on four new chip designs.

Benchmark #Instances #Nets Description Source

s38584 6977 6540 A digital processing unit ISCAS89
AES 19071 18007 The AES block cipher core OpenLane2
JPEG 27507 28996 A JPEG encoder module OpenROAD
Eth 41905 38178 Ethernet MAC (media access control) module OpenROAD

according to the prediction results. This evaluation is provided as DRC cost feedback to iRT. The
subsequent iterations of detailed routing can be done more strategically, thereby reducing DRVs.

As shown in Fig. 13, we further illustrate the predicted DRV map obtained from our prediction
model, the actual DRV map of the initial detailed route without iteration, and the DR map after
iteration based on the prediction results, from left to right, to provide an intuitive comparison. The
scale of each map is the same. The prediction result of our model in Fig. 13(a) is marked with a
red rectangular box. The small white box with a cross in the corresponding figure of the violation
generated after direct routing in Fig. 13(b) achieves coverage matching with the violation position
after the actual detailed routing. We integrate the predicted DRV result by our prediction model
into the initial DR, then we obtain the result without DRV as shown in Fig. 13(c). This is because
the router updates the wire net to avoid violating the DRC.

To further validate the effectiveness of our model, we compared the initial routing quality of the
traditional design flow with the routing quality after iteration based on the predictive model. Each
design instance underwent routing twice: first, to obtain the DRVs from the initial routing, and
second, to generate a higher-quality solution guided by DRV predictions. The comparison is based
on the balance of precision and recall. The figure illustrates the difference in the number of DRVs.
As shown in Fig. 14(a), our predictive model, when combined with routing-related optimizations,
effectively reduces DRVs in each design, significantly improving the initial routing quality. Overall,
the predicted routing iteration eliminates an average of 44% DRVs in the initial routing.

To further demonstrate the generalizability of the proposed method in detailed routing sce-
narios, we selected four representative designs from ISCAS’89, OpenLane2 and OpenROAD for
experimentation as shown in Table 3. By applying our AI-based prediction model during iterative
routing on these open-source benchmarks, we achieved a significant reduction in the number of
initial routing violations—on average by 38.8% as shown in Fig. 14(b). These results validate the
robustness and effectiveness of the AI prediction approach across different design contexts.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

XXX:22 Yifan Li, Ruizhi Liu, Zhisheng Zeng, Zengrong Huang, Zhipeng Huang, Dongbo Bu, and Xingquan Li

0

100000

200000

300000

400000

ysyx_0 ysyx_1 ysyx_2 ysyx_3 ysyx_4 ysyx_5 ysyx_6 ysyx_7 ysyx_8 ysyx_9

Number of DRC Violations

Initial routing Iterative routing based on AI prediction

(a) Comparison on “ysyx” design set.

0

25000

50000

s38584 AES JPEG Eth

Number of DRC Violations

Initial routing

Iterative routing based on AI
prediction

(b) Comparison on four new designs from ISCAS’89, OpenLane2 and OpenROAD.

Fig. 14. Comparison of the number of initial detailed routing DRVs based on DRC engine and AI prediction.

0

5000

10000

15000

20000

25000

ysyx_0 ysyx_1 ysyx_2 ysyx_3 ysyx_4 ysyx_5 ysyx_6 ysyx_7 ysyx_8 ysyx_9

Time(s)

DRC Engine AI Method

Fig. 15. Comparison of the time consumption for obtaining DRVs based on DRC engine and AI prediction.

In addition, computational efficiency is a crucial factor in practical applications. We compared
the speed of DRV prediction with the time required to run the same rule set in a traditional DRC
engine during a detailed routing iteration. Our framework integrates multiple test sets, and Fig. 15
presents the inference time of ourmodel alongside the checking time of the traditional DRC engine
for each design example, which is the accumulation of the time of each thread under the same
multi-threading. Among the design examples, the fastest inference time is only 5% of the DRC
engine’s checking time, achieving an average speed-up of 16×. While the traditional DRC engine

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

AiDRC: Accelerating Detailed Routing by AI-Driven Design Rule Violation Prediction and Checking XXX:23

(a) (b)

Fig. 16. (a) The trade-off between precision and recall of AiDRC prediction model. (b) The number of DRVs
after initial routing iteration based on prediction results of different precision and recall.

provides a more comprehensive and precise violation check, the significant speed advantage of
the AI prediction model makes it suitable for early-stage detailed routing. Early detection and
resolution of conflicts can help shorten the overall design cycle.

For model training, the parameters are influenced by the loss function, and the prediction met-
rics can vary significantly. Here, we take precision and recall as examples. A high recall rate in-
dicates broad violation prediction coverage, but it may also lead to false positives. Conversely, a
high precision rate suggests fewer false positives, but it may result in fewer predicted violations.
Therefore, the impact of feedback-based routing iteration remains highly uncertain. To further ex-
plore the balance between these metrics, we adjust the weight ratio of the combined loss function.
As shown in the Fig. 16(a), this produces a set of trade-off data for precision and recall. The fitted
curve forms an arc, showing that as one metric increases, the other decreases. The corresponding
generated model is then integrated into detailed routing, and an iteration is performed based on
“ysyx_0”. As illustrated in the Fig. 16(b), the number of violations is minimized when precision
and recall are relatively balanced. When precision increases, prediction coverage decreases; when
recall increases, the number of violations rises accordingly. From the actual feedback results, the
highest optimization is achieved when a balance is maintained. Compared to extreme cases on
both sides, the reduction in the middle reaches up to 12%, demonstrating that iterative violation
reduction yields the greatest benefit.

5.4 Ablation Study of AiDRC Prediction
To evaluate the impact of individual components in our proposed network architecture, as well as
the contribution of different terms in the loss function, we conducted a series of ablation studies.

Fig. 17(a) compares three variants: the original ResNet, ResNetwith Crisscross Attention (ResCCA),
and ResNet with both Crisscross Attention and Channel Transformer (ResCCA-CT). Experiments
are conducted using 100,000 randomly sampled GCells from cases ysyx-5∼9 for training and 10,000
GCells from ysyx-0∼4 for testing. We report mean precision and recall on the test set, with confi-
dence analysis over 20 independent runs (using different random seeds), visualized through 95%
confidence ellipses to robustly assess performance. Results show that ResCCA-CT achieves supe-
rior performancewith its distribution nearest to the top-right corner (higher precision& recall) and
tighter clustering that demonstrates both higher accuracy and stability. CCA alone also provides
measurable accuracy gains, which are valuable for DRV prediction. Using the same ResCCA-CT
architecture, we examine the impacts of different loss functions in Fig. 17(b). The experimental
results demonstrate that combining focal loss ℓ𝑓 𝑜𝑐𝑎𝑙 , dice loss ℓ𝑑𝑖𝑐𝑒 and precision loss ℓ𝑝𝑟𝑒 (w/dice,

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

XXX:24 Yifan Li, Ruizhi Liu, Zhisheng Zeng, Zengrong Huang, Zhipeng Huang, Dongbo Bu, and Xingquan Li

0.525 0.550 0.575 0.600 0.625 0.650 0.675 0.700
Precision

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Re
ca

ll

ResNet-34
ResCCA
ResCCA-CT

(a)

0.525 0.550 0.575 0.600 0.625 0.650 0.675 0.700
Precision

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Re
ca

ll

w/o dice, w/o pre
w/ dice, w/o pre
w/o dice, w/ pre
w/ dice, w/ pre

(b)

Fig. 17. Ablation studies. (1) Network architecture. (b) Loss function.

FCN RouteNet ResCCA-CT(34) ResCCA-CT(50) ResCCA-CT(101)
Models

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

F1
-S

co
re

Performance-Memory
Trade-off Point

F1-Score
Memory Usage (MB)

0

3000

6000

9000

12000

15000

18000

21000

24000

M
em

or
y

U
sa

ge
 (

M
B)

Fig. 18. Model performance vs GPU Memory Usage Comparison.

w/pre) yields optimal results (nearest to the top-right corner), while adding only ℓ𝑑𝑖𝑐𝑒 (w/dice, w/o
pre) or only ℓ𝑝𝑟𝑒 (w/o dice, w/ pre) still improves performance over using solely ℓ𝑓 𝑜𝑐𝑎𝑙 (w/o dice,
w/o pre), which also reduces the stability of model. These findings confirm that both architectural
refinements (Crisscross Attention / Channel Transformer) and loss function design critically im-
pact model robustness and prediction quality.

To validate the rationality of backbone network depth selection in the ResCCA-CT model, we
conducted a comparative analysis of performance and resource consumption across ResNet archi-
tectures with varying depths. As illustrated in Fig. 18, transitioning from FCN to U-Net and finally
to ResCCA-CT(34), the model’s F1-score improved from 0.412 to 0.671, while GPU memory usage
increased from 1588 MB to 10125 MB, demonstrating a substantial performance-resource trade-off.
However, further increasing the backbone depth to ResNet-50 and ResNet-101 led to a sharp rise in

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

AiDRC: Accelerating Detailed Routing by AI-Driven Design Rule Violation Prediction and Checking XXX:25

Table 4. The results of AiDRC checking model.

Design
Metrics

Precision Recall FPR AUC F1-score

ysyx_0 0.941 0.925 0.001 0.997 0.932
ysyx_1 0.959 0.928 0.001 0.995 0.943
ysyx_2 0.953 0.910 0.001 0.985 0.931
ysyx_3 0.972 0.906 0.001 0.980 0.938
ysyx_4 0.935 0.917 0.001 0.995 0.926
ysyx_5 0.967 0.911 0.001 0.983 0.938
ysyx_6 0.964 0.922 0.001 0.995 0.942
ysyx_7 0.964 0.932 0.001 0.985 0.948
ysyx_8 0.973 0.884 0.001 0.971 0.927
ysyx_9 0.956 0.868 0.001 0.987 0.910

Average 0.960 0.909 0.001 0.986 0.934

memory consumption to 14714 MB and 22470 MB (representing increases of 45% and 122%, respec-
tively), accompanied by only marginal F1-score improvements to 0.672 and 0.678 (gains of merely
0.15% and 1.04%). This observation indicates that ResCCA-CT(34) achieves the optimal point in
the performance-resource tradeoff. Deeper architectures not only substantially increase memory
overhead and training complexity but also potentially introduce overfitting risks, while offering di-
minishing performance returns. Therefore, employing ResNet-34 as the backbone for ResCCA-CT
provides an optimal balance, ensuring robust prediction performance while maintaining reason-
able computational resource requirements.

As previously noted, DRC checking is a frequent and time-intensive task during detailed routing
iterations, with the DRC engine’s computation serving as a significant bottleneck. To accelerate
this stage, we embed an AI model into the detailed routing iteration process to enhance checking
efficiency. After each detailed routing iteration, key features are extracted and fed into the AI
model, which generates rectangular boxes of DRVs. These DRV results are then passed to the next
iteration, guiding detailed routing decisions and helping to bypass violations, thereby optimizing
the network. At this detailed routing stage, the AI model leverages more routing and via feature
information to enhance DRV detection.

5.5 Accelerating Detailed Routing by AiDRC Checking
OurAiDRCmodel delivers exceptional checking accuracy and achieves a significantly higher accel-
eration ratio compared to traditional DRC engine-based checking. Table 4 summarizes the AiDRC
checking model across ten benchmark designs. Five objective evaluation metrics are used: “Preci-
sion”, “Recall”, “FPR”, “AUC of ROC”, and “F1-score”. The important results in the table are high-
lighted in bold. The experimental results in Table 4 show that our AiDRC checking achieves an
impressive AUC of 0.986, F1-score of 0.96, along with high recall, and precision. A visual diagram
of metrics is shown in Fig. 19(a). These metrics demonstrate that our AiDRC checking model can
correctly detect most of the design rule violations. This reflects the effectiveness of our AiDRC
checking in DRC detection during detailed routing iterations.

The runtime speed-up results on “ysyx_0” are shown in Fig. 19(b). Our AiDRC checking offers
fast inference speed. Compared to traditional DRC engine-based checking, our AiDRC checking
performs violation prediction 293× faster. This improvement demonstrates that AI-driven DRV

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

XXX:26 Yifan Li, Ruizhi Liu, Zhisheng Zeng, Zengrong Huang, Zhipeng Huang, Dongbo Bu, and Xingquan Li

Fig. 19. (a) Performance indicators of our AiDRC checking in detailed routing iteration. (b) Runtime com-
parison between traditional DRC engine and our AiDRC checking.

Fig. 20. (a) Actual DRV results from a DRC engine (displayed as a red box). (b) DRV results from our AiDRC
cheking.

checking can significantly accelerate the detailed routing iteration process. However, the DRC
engine remains essential as the final check to ensure full DRC verification before routing conver-
gence. AI can work alongside the DRC engine to accelerate design convergence, reducing overall
iteration time while maintaining accuracy.

At last, we show a comparison of design rule violation checking results as in Fig. 20.The ground
truth DRV results detected by a traditional DRC engine are shown in Fig. 20(a), and the detection
results by our AiDRC checking are shown in Fig. 20(b) (highlighted by yellow arrows). From the
two figures, we can see that our AiDRC checking can achieve relatively high detection accuracy.

6 CONCLUSION
This study presents AiDRC, an advanced deep learning-based framework designed for precise
fine-grained DRV prediction and accelerated DRV checking. We introduce an innovative DRV
prediction model, which employs a ResNet-based architecture enhanced with non-local recurrent
crisscross attention and cross-layer channel transformer mechanisms. This enables accurate and

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

AiDRC: Accelerating Detailed Routing by AI-Driven Design Rule Violation Prediction and Checking XXX:27

efficient routability prediction in the physical design process. This model predicts the fine-grained
intra-GCell DRVs after the completion of track assignment, successfully identifying initial DRVs
and effectively overcoming the limitations of existing coarse-grained prediction methods based
solely on global routing. The routing guidelines generated based on the prediction results signifi-
cantly reduce the number of initial DRVs by 44%, thereby lowering design iteration costs. Beyond
prediction capabilities, our framework introduces a neural network-based DRV checking para-
digm that replaces traditional DRC engines in the detailed routing iteration. The implemented
ResNet-based DRV checking model achieves an extraordinary 293× acceleration compared to the
conventional rule-based DRC engine while maintaining equivalent accuracy in DRV identification.
This work strikes a better balance between accuracy and computational efficiency and pioneers
the application of learning-based methods into complex IC physical design workflows. Compared
to traditional DRV checks performed after detailed routing, our method significantly reduces the
checking time, enabling layout engineers to assess routability quickly and converge toward a DRV-
free layout. The application of this approach is expected to advance routability prediction technol-
ogy and provide a more efficient solution for IC design.

REFERENCES
[1] Yu-Hung Huang, Zhiyao Xie, Guan-Qi Fang, Tao-Chun Yu, Haoxing Ren, Shao-Yun Fang, Yiran Chen, and Jiang Hu.

Routability-driven macro placement with embedded cnn-based prediction model. In Proc. of 2019 Design, Automation
Test in Europe Conference Exhibition (DATE), pages 180–185, 2019.

[2] Aysa Fakheri Tabrizi, Nima Karimpour Darav, Logan Rakai, Ismail Bustany, Andrew Kennings, and Laleh Behjat.
Eh?Predictor: A Deep Learning Framework to Identify Detailed Routing Short Violations From a Placed Netlist. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 39(6):1177–1190, 2020.

[3] Chen-Han Lu, Hsin-Hung Pan, Ting-Chi Wang, Po-Yuan Chen, and Chin-Fang Cindy Shen. Machine Learning based
Routing Guide Generation and its Application to Design Rule Violation Reduction. In Proc. of 2023 International VLSI
Symposium on Technology, Systems and Applications (VLSI-TSA), pages 1–4, 2023.

[4] Ping Zhang, Pengju Yao, Xingquan Li, Bei Yu, andWenxing Zhu. V-GR: 3D Global Routing with Via Minimization and
Multi-Strategy Rip-up and Rerouting. In Proc. of 2024 Asia and South Pacific Design Automation Conference (ASP-DAC),
pages 963–968. IEEE, 2024.

[5] Daeyeon Kim, Jakang Lee, and Seokhyeong Kang. Routability prediction using deep hierarchical classification and
regression. In Proc. of 2023 Design, Automation Test in Europe Conference Exhibition (DATE), pages 1–2, 2023.

[6] Jingui Lin, Wenxiong Lin, Shiyan Liang, Peng Gao, Yan Xing, Tingting Wu, Xiaoming Xiong, and Shuting Cai. An
efficient method of drc violation prediction with a serial deep learningmodel. ACMTransactions on Design Automation
of Electronic Systems (TODAES), 29(6):1–16, 2024.

[7] Seonghyeon Park, Daeyeon Kim, Seongbin Kwon, and Seokhyeong Kang. Routability prediction and optimization
using explainable ai. In Proc. of 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), pages
1–8, 2023.

[8] Chen-Chia Chang, Jingyu Pan, Tunhou Zhang, Zhiyao Xie, JiangHu,Weiyi Qi, Chun-Wei Lin, Rongjian Liang, Joydeep
Mitra, Elias Fallon, and Yiran Chen. Automatic routability predictor development using neural architecture search.
In Proc. of 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD), pages 1–9, 2021.

[9] Jhen-Gang Lin, Yu-Guang Chen, Yun-Wei Yang, Wei-Tse Hung, Cheng-Hong Tsai, De-Shiun Fu, and Mango Chia-Tso
Chao. DRC Violation Prediction with Pre-global-routing Features Through Convolutional Neural Network. In Proc.
of the Great Lakes Symposium on VLSI (GLSVLSI), page 313–319, 2023.

[10] Hyunbum Park, Kyeonghyeon Baek, Suwan Kim, Kyumyung Choi, and Taewhan Kim. Pin Accessibility and Routing
Congestion Aware DRC Hotspot Prediction for Designs in Advanced Technology Nodes With Consolidated Prac-
tical Applicability and Sustainability. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems(TCAD), 43(12):4786–4799, 2024.

[11] Zhiyao Xie, Yu-Hung Huang, Guan-Qi Fang, Haoxing Ren, Shao-Yun Fang, Yiran Chen, and Jiang Hu. RouteNet:
Routability prediction for Mixed-Size Designs Using Convolutional Neural Network. In Proc. of the 37th IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages 1–8, 2018.

[12] Wei-Tse Hung, Yu-Guang Chen, Jhen-Gang Lin, Yun-Wei Yang, Cheng-Hong Tsai, and Mango Chia-Tso Chao. DRC
Violation Prediction After Global Route Through Convolutional Neural Network. IEEE Transactions on Very Large
Scale Integration Systems, 31(9):1425–1438, 2023.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

XXX:28 Yifan Li, Ruizhi Liu, Zhisheng Zeng, Zengrong Huang, Zhipeng Huang, Dongbo Bu, and Xingquan Li

[13] Riadul Islam. Early Stage DRC Prediction Using Ensemble Machine Learning Algorithms. IEEE Canadian Journal of
Electrical and Computer Engineering, 45(4):354–364, 2022.

[14] Ying-Yao Huang, Chang-Tzu Lin, Wei-Lun Liang, and Hung-Ming Chen. Learning Based Placement Refinement to
Reduce DRC Short Violations. In Proc. of 2021 International Symposium on VLSI Design, Automation and Test (VLSI-
DAT), pages 1–4, 2021.

[15] Wei-Tse Hung, Jun-Yang Huang, Yih-Chih Chou, Cheng-Hong Tsai, and Mango Chao. Transforming Global Routing
Report into DRC Violation Map with Convolutional Neural Network. In Proc. of the 2020 International Symposium on
Physical Design (ISPD), page 57–64, 2020.

[16] Rongjian Liang, Hua Xiang, Jinwook Jung, Jiang Hu, and Gi-Joon Nam. A stochastic approach to handle non-
determinism in deep learning-based design rule violation predictions. In Proc. of the 41st IEEE/ACM International
Conference on Computer-Aided Design(ICCAD), pages 1–8, 2022.

[17] Luis Francisco, Tanmay Lagare, Arpit Jain, Somal Chaudhary, Madhura Kulkarni, Divya Sardana, W. Rhett Davis, and
Paul Franzon. Design Rule Checking with a CNN Based Feature Extractor. In Proc. of 2020 ACM/IEEE 2nd Workshop
on Machine Learning for CAD (MLCAD), pages 9–14, 2020.

[18] Wei-Ting J. Chan, Pei-Hsin Ho, Andrew B. Kahng, and Prashant Saxena. Routability Optimization for Industrial
Designs at Sub-14nm Process Nodes Using Machine Learning. In Proc. of the 2017 ACM on International Symposium
on Physical Design (ISPD), page 15–21, 2017.

[19] Hailiang Li, Yan Huo, Yan Wang, Xu Yang, Miaohui Hao, and Xiao Wang. A Lightweight Inception Boosted U-Net
Neural Network for Routability Prediction. In Proc. of the 2nd IEEE International Symposium of Electronics Design
Automation (ISEDA), pages 648–653, 2024.

[20] Andrew B. Kahng, Lutong Wang, and Bangqi Xu. TritonRoute-WXL: The Open-Source Router With Integrated DRC
Engine. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems(TCAD), 41(4):1076–1089, 2022.

[21] Ruizhi Liu, Shizhe Ding, Jingyan Sui, Xingquan Li, and Dongbo Bu. NeuralSteiner: Learning Steiner Tree for Overflow-
avoiding Global Routing in Chip Design. Advances in Neural Information Processing Systems (NIPS), 37:127346–127368,
2025.

[22] Zhisheng Zeng, Jikang Liu, Zhipeng Huang, Ye Cai, Biwei Xie, Yungang Bao, and Xingquan Li. Net Resource Alloca-
tion: A Desirable Initial Routing Step. In Proc. of the 61st ACM/IEEE Design Automation Conference (DAC), page 1–6,
2024.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proc. of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[24] Zilong Huang, Xinggang Wang, Yunchao Wei, Lichao Huang, Humphrey Shi, Wenyu Liu, and Thomas S. Huang. CC-
Net: Criss-Cross Attention for Semantic Segmentation . IEEE Transactions on Pattern Analysis & Machine Intelligence,
45(06):6896–6908, 2023.

[25] Tinghuan Chen, Silu Xiong, Huan He, and Bei Yu. TRouter: Thermal-Driven PCB Routing via Nonlocal Crisscross
Attention Networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 42(10):3388–3401,
2023.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Proc. of the 31st International Conference on Neural Information Processing
Systems, page 6000–6010, 2017.

[27] Wenyong Han, Tao Zhu, Liming Chen, Huansheng Ning, Yang Luo, and Yaping Wan. MCformer: Multivariate Time
Series Forecasting With Mixed-Channels Transformer. IEEE Internet of Things Journal, 11(17):28320–28329, 2024.

[28] Haonan Wang, Peng Cao, Jiaqi Wang, and Osmar R Zaiane. Uctransnet: rethinking the skip connections in u-net
from a channel-wise perspective with transformer. In Proc. of the AAAI Conference on Artificial Intelligence (AAAI),
volume 36, pages 2441–2449, 2022.

[29] Hualian Sheng, Sijia Cai, Yuan Liu, Bing Deng, Jianqiang Huang, Xian-Sheng Hua, and Min-Jian Zhao. Improving
3D Object Detection With Channel-Wise Transformer. In Proc. of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 2743–2752, October 2021.

[30] Xingquan Li, Simin Tao, Shijian Chen, Zhisheng Zeng, Zhipeng Huang, Hongxi Wu, Weiguo Li, Zengrong Huang,
Liwei Ni, Xueyan Zhao, He Liu, Shuaiying Long, Ruizhi Liu, Xiaoze Lin, Bo Yang, Fuxing Huang, Zonglin Yang, Yihang
Qiu, Zheqing Shao, Jikang Liu, Yuyao Liang, Biwei Xie, Yungang Bao, and Bei Yu. iPD: An Open-source intelligent
Physical Design Toolchain. In Proc. of 29th Asia and South Pacific Design Automation Conference (ASP-DAC), pages
83–88, 2024.

[31] Lin Li, Yici Cai, and Qiang Zhou. An Efficient Approach for DRC Hotspot Prediction with Convolutional Neural
Network. In Proc. of 2021 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–5, 2021.

[32] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal Loss for Dense Object Detection. In
Proc. of 2017 IEEE International Conference on Computer Vision (ICCV), pages 2999–3007, 2017.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

AiDRC: Accelerating Detailed Routing by AI-Driven Design Rule Violation Prediction and Checking XXX:29

[33] Xingquan Li, Simin Tao, Zengrong Huang, Shijian Chen, Zhisheng Zeng, Liwei Ni, Zhipeng Huang, Chunan Zhuang,
Hongxi Wu, Weiguo Li, et al. iEDA: An Open-source Intelligent Physical Implementation Toolkit and Library. arXiv
preprint arXiv:2308.01857, 2023. https://github.com/OSCC-Project/iEDA.

[34] Yihang Qiu, Zengrong Huang, Weiguo Li, Xinhua Lai, Rui Wang, He Liu, Ping Zhou, Simin Tao, Junfeng Liu, Yi-
fan Li, et al. AiEDA-2.0: An Open-source AI-Aided Design (AAD) Library for Design-to-Vector. In Proc. of 2025
International Symposium of Electronics Design Automation (ISEDA), pages 5–6. IEEE, 2025. https://github.com/OSCC-
Project/AiEDA.

[35] Rongjian Liang, Hua Xiang, Diwesh Pandey, Lakshmi Reddy, Shyam Ramji, Gi-Joon Nam, and Jiang Hu. DRC Hotspot
Prediction at Sub-10nm Process Nodes Using Customized Convolutional Network. In Proc. of the 2020 International
Symposium on Physical Design (ISPD), page 135–142, 2020.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2024.

https://github.com/OSCC-Project/iEDA
https://github.com/OSCC-Project/AiEDA
https://github.com/OSCC-Project/AiEDA

	Abstract
	1 Introduction
	2 Problem and Framework
	2.1 Problem and Motivation
	2.2 Preliminaries
	2.3 AiDRC Framework

	3 Feature Selection
	4 Model Architecture
	4.1 Network Overview
	4.2 Recurrent Crisscross Attention
	4.3 Channel Transformer
	4.4 Model Training

	5 Experimental Results
	5.1 Dataset Generation
	5.2 Evaluation on DRV Prediction
	5.3 Accelerating Initial Detailed Routing by AiDRC Prediction
	5.4 Ablation Study of AiDRC Prediction
	5.5 Accelerating Detailed Routing by AiDRC Checking

	6 Conclusion
	References

