
AiTPO: KAN-UNet Heterogeneous Network for Timing
Prediction and Optimization at Global Routing

HE LIU, School of Electronic and Computer Engineering, Peking University, China

ZHISHENG ZENG, Pengcheng Laboratory, China
SIMIN TAO, Pengcheng Laboratory, China
ZHIPENG HUANG, Pengcheng Laboratory, China
YIFAN LI∗, Pengcheng Laboratory, China

BIWEI XIE, Institute of Computing Technology, Chinese Academy of Sciences, China

WEI GAO, School of Electronic and Computer Engineering, Peking University, China

XINGQUAN LI, Pengcheng Laboratory, China

Routing is a critical stage in achieving timing closure in integrated circuit design. Due to the time-consuming

flow of detailed routing (DR), the lack of accurate routing information, and the impact of congestion during

global routing (GR), rapidly obtaining precise timing information at the global routing stage to guide subsequent

timing optimization is a significant challenge. These challenges lead to substantial discrepancies between the

estimated timing at GR stage and the actual results after post-DR, resulting in inaccurate evaluations of chip

performance. To address this issue, we propose an effective timing prediction and optimization framework,

AiTPO. The innovative KAN-UNet heterogeneous timing prediction model effectively combines UNet and KAN

networks. By fusing spatial features extracted by UNet with numerical data, the model gains the capability to

learn complex relationships across multi-modal data, thereby enhancing robustness and accuracy. Additionally,

with the accurate timing evaluation, we introduce two timing optimization strategies during global routing to

enhance timing performance. The first strategy involves net ordering based on predicted significant delay

nets, prioritizing the routing of more timing-critical nets to reduce detours caused by congestion. The second

strategy employs timing estimation to select the most optimal topology from multiple candidates generated by

the enhanced A* algorithm, where congestion is considered as a cost factor. Which contributes to optimizing

Worst Negative Slack (WNS) and Total Negative Slack (TNS). Experimental results on the real circuits under

28nm process node show that the wire delay prediction accuracy with the proposed KAN-UNet model improves

by 34.6% and 25.4% in terms of Mean Absolute Error (MAE) and Max Absolute Error (MaxAE), respectively,

compared to GR-based estimations and demonstrate the effectiveness of our timing optimization strategies,

which lead to a 2.0% and 4.2% improvement in TNS and WNS, respectively.

CCS Concepts: • Hardware→ Static timing analysis;Wire routing.
∗
Corresponding author

This work is supported in part by the Major Key Project of PCL (No. PCL2023A03), and the Natural Science Foundation of

Fujian Province under Grants (No. 2024J09045).

Authors’ Contact Information: He Liu, School of Electronic and Computer Engineering, Peking University, Shenzhen,

China, liuh@stu.pku.edu.cn; Zhisheng Zeng, Pengcheng Laboratory, Shenzhen, China, zengzhsh@pcl.ac.cn; Simin Tao,

Pengcheng Laboratory, Shenzhen, China, taosm@pcl.ac.cn; Zhipeng Huang, Pengcheng Laboratory, Shenzhen, China,

huangzhp@pcl.ac.cn; Yifan Li, Pengcheng Laboratory, Shenzhen, China, liyf03@pcl.ac.cn; Biwei Xie, Institute of Computing

Technology, Chinese Academy of Sciences, Beijing, China, xiebiwei@ict.ac.cn; Wei Gao, School of Electronic and Computer

Engineering, Peking University, Shenzhen, China, gaowei262@pku.edu.cn; Xingquan Li, Pengcheng Laboratory, Shenzhen,

China, fzulxq@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1557-7309/2025/XX-ARTXXX

https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

HTTPS://ORCID.ORG/0009-0000-4829-7737
HTTPS://ORCID.ORG/0009-0009-3686-4576
HTTPS://ORCID.ORG/0009-0001-4496-4317
HTTPS://ORCID.ORG/0009-0004-1762-479X
HTTPS://ORCID.ORG/0000-0003-0804-7236
HTTPS://ORCID.ORG/0000-0003-4045-6806
HTTPS://ORCID.ORG/0000-0001-7429-5495
HTTPS://ORCID.ORG/0000-0002-7145-9391
https://orcid.org/0009-0000-4829-7737
https://orcid.org/0009-0009-3686-4576
https://orcid.org/0009-0001-4496-4317
https://orcid.org/0009-0004-1762-479X
https://orcid.org/0000-0003-0804-7236
https://orcid.org/0000-0003-4045-6806
https://orcid.org/0000-0001-7429-5495
https://orcid.org/0000-0002-7145-9391
https://doi.org/XXXXXXX.XXXXXXX

XXX:2 H. Liu, et al.

Additional KeyWords and Phrases: Global routing, timing prediction, timing optimization, UNet, KAN, re-route

ACM Reference Format:
He Liu, Zhisheng Zeng, Simin Tao, Zhipeng Huang, Yifan Li, Biwei Xie, Wei Gao, and Xingquan Li. 2025. AiTPO:

KAN-UNet Heterogeneous Network for Timing Prediction and Optimization at Global Routing. ACM Trans.
Des. Autom. Electron. Syst. XX, X, Article XXX (XX 2025), 28 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
In the design of modern integrated circuits (ICs), the flow from global routing (GR) to detailed

routing (DR) is a critical juncture that significantly influences the final performance of the chip. The

GR stage is responsible for generating preliminary routing paths, providing global guidance for the

connections between various components on the chip. This stage conveys these path details through

guide files, laying the foundation for precise routing in the DR stage. Detailed routing builds upon

this foundation, performing more refined routing to ensure compliance with all electrical rules and

performance requirements [11]. By effectively transitioning from GR to DR, the design process can

achieve significant improvements in optimizing routing resources, enhancing timing performance,

and adhering to manufacturing rules, ultimately ensuring the success and efficiency of the design.

The guide files generated during the Global Routing stage can be used for preliminary timing

estimation. Although these assessments are somewhat coarse, they provide valuable insights

for subsequent timing optimizations. Detailed routing tools utilize these guide files for timing

optimization tasks, such as buffer insertion and gate delay adjustments. Additionally, by evaluating

the results after the detailed routing stage, designers can return to the GR stage to adjust routing

plans and layer assignments, further optimizing timing and power consumption. As is shown in

Fig. 1(a), to obtain accurate wire delay information, it is necessary to extract the actual parasitic

parameters through the detailed routing stage before performing timing analysis.

However, the detailed routing stage requires careful consideration of numerous physical design

rules (such as line width, spacing, resistance, capacitance, etc.) and must precisely determine the

final positions and layers for each net [13]. This results in a computational complexity far greater

than that of global routing, demanding significant computational resources and time. For large

designs, completing DR may take several hours or even days, which is unacceptable for iterative

optimization [13]. If timing prediction and optimization are not adequately addressed during the

GR stage, more challenging timing violations may emerge during the DR stage. At that point,

attempting to correct these issues through buffer insertion, gate-level adjustments, and other

techniques can further complicate the routing, potentially introducing new timing issues or routing

congestion [22]. Therefore, performing timing prediction and preliminary optimization during the

GR stage is crucial for reducing design iterations and improving overall design efficiency.

In the Global Routing stage, the topology of the steiner tree only describes the connectivity and

path planning between network nodes, without including detailed physical information such as

wire width, thickness, material properties, and the parasitic resistance and capacitance of each

metal layer. These physical parameters can only be accurately determined during the detailed

routing stage, and they have a crucial impact on signal propagation delay. Approximate wirelength

models, such as the Half-Perimeter Wirelength (HPWL) model, are typically used prior to the global

routing stage to estimate timing. However, wire analysis based on global routing provides more

accurate results than HPWL. These models assume that signal paths are ideal and linear, ignoring

complex parasitic effects and routing details. The lack of accurate parasitic information in GR means

that timing estimates at this stage are often overly optimistic or pessimistic, which can mislead

the subsequent design steps. This idealized approximation can lead to significant discrepancies

between the estimated timing and the actual results obtained in the DR stage.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

https://doi.org/XXXXXXX.XXXXXXX

AiTPO: KAN-UNet Heterogeneous Network for Timing Prediction and Optimization at Global Routing XXX:3

Fig. 1. Analysis of traditional timing analysis method, existed machine learning-based prediction methods,
and our proposed multi-modal model framework.

With the continuous improvement of Electronic Design Automation (EDA) infrastructure [2]

and the growing abundance of high-quality datasets [15], the application of machine learning

technologies in the EDA domain is deepening and expanding. Therefore, it becomes highly necessary

to adopt machine learning methods for timing prediction and optimization during the GR stage

[3]. Utilizing machine learning techniques at this stage can significantly enhance the accuracy

of timing predictions, while simultaneously guiding timing optimizations, allowing designers to

proactively address potential timing violations before they become critical issues in later stages.

This dual approach reduces design iterations and accelerates the design process. By integrating

timing prediction with optimization, efficient machine learning methods not only ensure that

the routing decisions made during the GR stage are robust enough to meet the stringent timing

requirements that will be validated in the subsequent DR stage but also significantly improve the

overall efficiency and success rate of integrated circuit design.

Previous works. At different stages, timing metric results can be inconsistent with the final

post-DR stage due to uncertainty estimation or varying calculation methods, which may lead to

a failed sign-off after physical design. To improve timing consistency, it’s essential to calibrate

and ensure alignment with the final sign-off timing result at different stages. The authors propose

𝑁𝑒𝑡2 [24, 25], a graph attention network method for pre-placement net length estimation. Based

on net length predictions, they further develop a pre-placement timing estimator, which shows

significant improvements in correlation with ground truth compared to commercial tools’ pre-

placement timing reports. At the placement stage, The work [10] extracts the full timing features

using a look-ahead RC network to predict net delay accurately. The authors of [28] use Transformer

network and residual model to predict post-routing path delay at pre-routing stage. The work in

[8] presents a timing engine-inspired graph neural network (GNN) to predict arrival time and slack

at timing endpoints for timing-driven placement. At the global routing stage, the approach used

in [4] improves timing consistency between the global route and detailed route using machine

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:4 H. Liu, et al.

learning techniques and show higher accuracy than estimated timing. The work in [19] proposes a

timing prediction and optimization framework, TSteiner to refine the Steiner point after the Steiner

tree is constructed for explicit sign-off timing optimization. At the signoff stage, the work [1] uses

a machine-learning-based wire timing model to break the RC network loop of the non-tree nets

to predict fast and accurate wire delay compared with the sign-off timer. This work [16] develops

multiple net delay models with equivalent capacitance as enhanced features to bridge the gap

between open-source and commercial timing analysis tool. On the other hand, optimization-aware

timing prediction has been proposed for optimization at different design flow stages [9, 23].

Contributions. As is shown in Fig. 1(b) and Fig. 1(c), existing ML methods may fail to precisely

identify the causes of the timing gap between GR and DR, thus limiting their capacity to propose

more appropriate timing optimization strategies. When using machine learning-based methods

for wire delay prediction, it is essential to consider not only the wire-based influence features

but also the spatial characteristics of the surrounding layout area. For instance, layout features

such as congestion maps provide critical spatial context that directly influences routing behavior.

These map-based features help capture the spatial characteristics around the wire, offering a

more comprehensive understanding of how the local layout conditions impact wire delay. By

integrating both wire-based and map-based features, the predictive model can achieve greater

accuracy, reflecting the complex interplay between individual wire characteristics and the broader

layout environment. In this paper, we primarily focus on timing delay prediction that considers

spatial information features during the global routing stage. Furthermore, timing delay prediction

plays a key role in guiding the timing optimization process. We propose the AiTPO framework,

which integrates a timing prediction model with two timing optimization strategies. The key

contributions are summarized as follows:

(1) We propose the AiTPO framework, a comprehensive approach that effectively integrates

an innovative timing prediction model with two timing optimization strategies: net reorder

and net re-route. Timing prediction serves as a crucial guide for the subsequent timing

optimization process.

(2) We introduce a KAN-UNet timing prediction model that seamlessly integrates the UNet’s

encoder block into the Kolmogorov-Arnold Networks (KAN), enabling effective multi-scale

feature extraction, capturing both large-scale spatial patterns and fine-grained details, while

also incorporating these with numerical features for a more comprehensive and accurate

multi-modal features representation.

(3) We propose two optimization strategies: net reorder and net re-route. The first strategy

reorders nets based on predicted significant delay nets, prioritizing timing-critical routes

to mitigate congestion-induced detours. The second strategy employs timing estimation

to choose an optimal topology from multiple A* algorithm candidates, explicitly treating

congestion as a cost. By prioritizing the routing of nets with larger net delays and re-route

critical nets, these strategies contribute to optimizing post-DR Total Negative Slack (TNS)

and Worst Negative Slack (WNS).

(4) Experimental results on real circuits demonstrate that the wire delay prediction accuracy

with the proposed KAN-UNet model improves by 34.6% and 25.4% in terms of MAE and

MaxAE, respectively, compared to estimations made during the GR stage. In terms of timing

optimization, after applying the combined net reorder and net re-route strategies, post-DR

Total Negative Slack (TNS) and Worst Negative Slack (WNS) are improved by 2.0% and 4.2%,

respectively, indicating effective optimization ability and generalizability.

(5) Our framework is easy to extend, and can be easily applied to global routing engines in a

simple manner.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiTPO: KAN-UNet Heterogeneous Network for Timing Prediction and Optimization at Global Routing XXX:5

The subsequent sections of this paper are organized as follows. Section 2 primarily introduces

the global routing problem, A
∗
maze algorithm, and UNet network. Section 3 analyzes the tim-

ing evaluation in routing and introduces our proposed framework. Specifically, in Section 4, we

elaborate on the timing learning. Section 5 presents our two timing optimization algorithms. In

Section 6, we present and analyze the experimental results. Finally, Section 7 summarizes our work.

2 PRELIMINARIES
2.1 Global Routing
Global routing is a crucial step in physical design. During the global routing stage, the entire chip

is divided into smaller grids known as Global Routing Cells (GCells), each containing tracks that

serve as routing resources. These GCells represent the available routing capacity. Routing resource

management is then performed by analyzing the utilization of these resources within each GCell to

mitigate congestion issues. Finally, global routing algorithms determine a routing region, composed

of groups of GCells, for each routing task. This GCell-level routing region serves as the outcome of

the global routing process, which subsequently guides the detailed routing stage.

Traditional frameworks for solving large-scale global routing problems are mainly divided into

two types: three-dimensional (3D) routing frameworks and two-dimensional (2D) routing with

layer assignment. 3D routing directly obtains the final result on the graph, offering significant

flexibility and high-quality solutions. However, it involves a larger search space and higher time

complexity. To accelerate computation, some approaches adopt a multi-level framework [17, 26].

The method of 2D routing with layer assignment first compresses the multi-layer routing resources

onto a 2D plane for routing. Subsequently, through layer assignment, the 2D results are mapped to

different layers, completing the transformation from 2D to 3D. Compared to the 3D framework,

this approach offers greater flexibility and lower time complexity [6, 27].

Our global routing flow is based on 2D routing with layer assignment. It first generates the

rectilinear Steiner tree topology for each net in the design using the rectilinear Steiner tree lookup

table FLUTE [5]. In this work, we employ two optimization strategies: reorder and re-route. Within

the reorder strategy, we continue to use the Steiner tree topology generated by FLUTE. In the

second optimization strategy, since FLUTE aims for the shortest wire length, to find the optimal

delay Steiner tree topology, we decompose the original topology result into multiple two-pin nets.

For each net, we employ the enhanced A* search algorithm for routing, integrating perturbations

into the heuristic function and considering the congestion influence to generate multiple diverse

candidate routing solutions. Among these candidates, the optimal delay Steiner tree is selected as

the 2D routing result, which is subsequently transformed into a 3D routing solution through layer

assignment.

2.2 A∗ Maze Routing Algorithm
The A* algorithm is a classic and powerful heuristic search algorithm, widely used in pathfinding and

graph search fields. It combines the strengths of Dijkstra’s algorithmwith heuristic search strategies,

considering both the actual cost and the estimated cost of the path. This approach enhances search

efficiency while ensuring optimality. In the A* algorithm, each node has an associated cost function

𝑓 (𝑛) = 𝑔(𝑛) + ℎ(𝑛), where 𝑔(𝑛) is the actual path cost from the start node to the current node, and

ℎ(𝑛) is the heuristic estimate from the current node to the target node (usually the straight-line

distance to the goal). A* prioritizes the expansion of nodes with the lowest 𝑓 (𝑛) value, gradually
moving closer to the target node and effectively finding the global shortest path.

In the global routing stage of VLSI design, the A* algorithm has become a cornerstone for efficient

and optimal pathfinding. The primary objective of global routing is to establish connectivity between

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:6 H. Liu, et al.

all logic cells on the chip layout while adhering to stringent design rules and optimizing critical

metrics such as wire length, signal delay, and congestion minimization. The A* algorithm achieves

this by leveraging a combination of actual path length and heuristic cost estimates, allowing it to

not only determine the shortest feasible path but also to avoid regions of high congestion or areas

that might introduce excessive delay, power consumption, or routing violations.

A* algorithm can dynamically adapt to the routing landscape, accommodating design complexi-

ties such as irregular obstacle distributions and multi-layered routing requirements. In modern

integrated circuit designs, where a net may involve multiple sinks, the routing challenge becomes

exponentially more intricate. The A* algorithm effectively navigates these complexities by iter-

atively refining its search to ensure that all endpoints are optimally connected, often utilizing

techniques like cost penalties for turns and congestion to guide path selection. This capability is

critical in balancing trade-offs between timing, area, and power in advanced technology nodes,

ensuring robust and scalable routing solutions in high-density chip designs.

2.3 UNet Network
The UNet[21] model is a fully convolutional neural network architecture specifically designed for

image segmentation. Due to its innovative encoder-decoder structure and skip connections, UNet

has gained widespread adoption and recognition in the field of image processing, and it has also

been successfully applied to various other image segmentation tasks.

The UNet architecture is characterized by its symmetric "U" shape, comprising two main compo-

nents: the encoder (downsampling path) and the decoder (upsampling path), which are symmetri-

cally arranged. The encoder consists of a series of convolutional layers followed by max-pooling

layers, primarily aimed at extracting multi-level features from the input image. Each convolutional

block typically includes two successive 3×3 convolutions (with Rectified Linear Unit activation

functions [7]) and a 2×2 max-pooling operation. Through progressive downsampling, the encoder

captures higher-level semantic information while reducing the spatial resolution of the feature

maps. The decoder is designed to progressively restore the spatial resolution of the feature maps

and reconstruct them into a segmentation map that matches the size of the input image. At each

upsampling step, transposed convolutions are used to increase the resolution, and skip connections

are employed to concatenate the feature maps from corresponding encoder layers. This integration

of low-level spatial details with high-level semantic information enables the generation of highly

accurate segmentation results. Skip connections play a critical role in the UNet architecture by

directly concatenating high-resolution feature maps from the encoder with the corresponding

feature maps in the decoder. This design effectively mitigates the loss of spatial information caused

by multiple downsampling operations, enhancing the model’s localization ability and leading to

superior performance in semantic segmentation tasks.

In the feature selection stage of the time prediction model described in this paper, we transformed

the congestion map as the image-based feature. By leveraging the powerful feature extraction

capabilities of the UNet’s Encoder, we performed comprehensive feature extraction. This approach

allowed us to capture complex spatial-temporal patterns and multi-scale information that might

not be easily discerned through traditional methods, thereby enhancing the overall predictive

performance of the model.

3 Analysis and Framework
3.1 Timing Analysis in Routing
3.1.1 Wirelength and Timing Delay. In recent years, global routing methods have predominantly

focused on minimizing total wirelength as a primary optimization objective. While this approach

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiTPO: KAN-UNet Heterogeneous Network for Timing Prediction and Optimization at Global Routing XXX:7

Fig. 2. The impact of optimized topology routing on wirelength and delay. From left to right, the topology
changes, resulting in an overall increase in total wirelength. However, the wirelength for the critical path
from the source pin to sink pin 1 (green line) is reduced.

effectively reduces overall resource usage, it often overlooks the critical impact of timing delays on

the performance of integrated circuits. This paper argues that optimizing for wirelength alone is

insufficient, particularly in scenarios where timing closure is crucial.

We present a comparative analysis that highlights the trade-offs between total wirelength

minimization and critical path length optimization. As is shown in Fig. 2, as the topology changes

from left to right, the overall wire length increases, but the wirelength for the critical path from

the source pin to sink pin 1 (green line) is shortened, potentially reducing the delay. Our findings

indicate that while optimizing for timing delay may lead to a modest increase in total wirelength, it

significantly reduces the length of critical paths, thereby enhancing the overall timing performance

of the design.

The motivation behind this shift in focus stems from the observation that traditional GR methods,

which prioritize wirelength reduction, do not adequately address timing delays. By incorporating

timing delay as a key optimization objective, we aim to achieve better timing closure, even if it

comes at the cost of increased wirelength. The results of our study underscore the importance

of balancing wirelength and timing delay in global routing to meet the stringent performance

requirements of modern integrated circuits.

3.1.2 Global Routing and Detailed Routing. During the flow of physical design, the discrepancy

between post-GR and post-DR metrics plays a crucial role in achieving optimal timing performance.

Traditionally, global routing optimization has been guided by GR-specific metrics, which may not

always align with the actual timing results at post-DR. This misalignment can lead to suboptimal

timing closure, as the global routing metrics do not fully capture the complexities introduced during

the detailed routing stage.

To illustrate this point, we present a comparative analysis of timing performance between

GR and DR stages. As the Fig. 3 shown, the wire delay estimated during global routing often

deviates significantly from the actual delay observed after detailed routing. Our findings indicate

that optimizations relying solely on GR metrics frequently lead to suboptimal timing outcomes

compared to those informed by DR metrics. This discrepancy highlights the need for predictive

models that can better anticipate DR timing results during the earlier GR stage.

The motivation behind this approach is to bridge the gap between GR and DR, ensuring that the

optimization efforts during GR are more closely aligned with the actual timing requirements of

the final design. By integrating DR prediction into the GR process, we can achieve more accurate

timing evaluations, leading to enhanced performance and more reliable timing closure in the final

design.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:8 H. Liu, et al.

Fig. 3. Distinction between post-GR and post-DR wire delays of ysyx_1 (left) and ysyx_5 (right). The red
dashed line represents the ideal case where the wire delay at post-GR would equal the wire delay in post-DR
(i.e., the line y=x).

Fig. 4. Comparison of routing order impact. By reordering the routing sequence based on delay magnitude
and prioritizing the routing of these critical nets, wire lengths can be reduced, leading to decreased delays.

3.1.3 Net Order in Detail Routing. In integrated circuit design, nets with larger net delays are

usually located on critical paths, and these critical paths determine the overall clock frequency of

the circuit. As is depicted in Fig. 4, critical nets with longer wirelength and higher delays after DR

may have been detoured to avoid congested areas, leading to increased wire length. Fig. 5 illustrates

the impact of different routing orders. When the routing sequence in the left diagram is a-b-c,

congestion occurs between net 𝑏 and 𝑐 . In contrast, following the routing sequence c-b-a in the

right diagram prevents the congestion. By prioritizing the routing of nets with larger delays, it is

feasible to reduce their wire lengths to a certain degree, thereby optimizing the delay.

By prioritizing the routing of these nets, timing optimization can be addressed early, thereby

reducing the delays on critical paths and meeting timing requirements. According to Fig. 6, we can

observe that after applying the reorder optimization strategy, both post-DR TNS and WNS have

been improved to some extent. Prioritizing the handling of nets with larger delays can effectively

decrease the timing margin of critical paths, reduce the risk of timing violations, and enhance

the reliability of the circuit. If nets with larger delays are prioritized for routing and optimization,

timing bottlenecks in the design process can be quickly resolved, reducing the number of iterations

required.

3.2 Our Timing Optimization Framework
By conducting timing optimization in the GR stage, potential timing problems can be identified

and resolved early, reducing the number of design iterations needed later and thus accelerating the

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiTPO: KAN-UNet Heterogeneous Network for Timing Prediction and Optimization at Global Routing XXX:9

Fig. 5. The impact of different routing orders: When the routing order in the left figure is a-b-c, congestion
occurs between b and c. However, if the routing order is changed to c-b-a as shown in the right figure,
congestion does not occur.

Fig. 6. A comparison of the impact of routing order on WNS and TNS after detailed routing (DR).

overall design process. In this paper, we propose a novel timing-driven optimization framework for

the global routing stage, as illustrated in Fig. 7. The entire framework consists of two parts. The

first part is the timing prediction component, which predicts the post-DR timing during the global

routing stage and uses the prediction results to guide the optimization strategies in the next stage.

The second part is the timing optimization component, which primarily includes two optimization

strategies: net reorder and net re-route.

3.2.1 Timing Prediction. The primary function of the timing prediction module is to predict the

net delay after detailed routing during the global routing stage. Based on the prediction results,

net reorder and net re-route operations are guided. In this work, net delay refers to wire delay

(from source pin to sink pin). When a net has multiple pins, the two optimization approaches are

discussed as follows: (1) In the reorder optimization approach, since the sorting is based on the

net delay, net delay refers to the delay of the wire with the largest delay within the net; (2) In the

re-route optimization approach, critical wires in the critical nets are re-routed, and in this case,

net delay refers to the delay of the critical wires that are part of the critical path. Before model

training, effective feature extraction is required. After completing the GR operation, an open-source

static timing analysis engine is used to obtain features related to net delay, such as slew, resistance,

capacitance, as well as the corresponding layout features. These features are primarily modeled

as map-based features and numerical features. Based on the feature data type, we propose the

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:10 H. Liu, et al.

Fig. 7. Overall framework of the proposed AiTPO for timing prediction and optimization. Stage I: The process
of constructing the timing prediction network to guide the timing optimization procedure. Stage II: The
timing optimization procedure, consists of the net reorder and the net re-route strategies.

KAN-UNet network, where the model’s output is the predicted net delay. The prediction results

are then analyzed to guide the optimization process.

3.2.2 Timing Optimization: Net Reorder. In the physical design, nets with larger delays are typically

on critical paths, which set the circuit’s overall clock frequency. Prioritizing the routing of these nets

allows early timing optimization, reducing critical path delays and ensuring timing requirements

are met. Using the timing prediction model constructed in the previous stage, the net delay after

detailed routing is predicted. The predicted net delay results are then sorted from largest to smallest,

and priorities are assigned accordingly. Nets with higher priority are routed first, while those with

lower priority are routed later. The re-route is performed based on the established priority weights.

3.2.3 Timing Optimization: Net Re-route. In the design process, timing bottlenecks in critical

paths are often the main reason for multiple iterations. By re-route, these bottlenecks can be

effectively addressed, accelerating timing convergence, reducing the number of design iterations,

and shortening the design cycle. During the global routing stage, FLUTE uses a pre-computed

lookup table to quickly generate an approximately optimal Steiner tree based on a given set of

terminal points. This approximation serves to guide the subsequent detailed routing steps. The

objective of the Steiner tree is to minimize the total wire length while meeting routing constraints.

However, the routing resulting from this might not necessarily be optimal for timing after detailed

routing. By using predictions from a timing prediction model, adjustments can be made to the

routing of critical nets during the GR stage, prioritizing timing over wire length. Detailed routing

is then performed based on the adjusted connections, aiming to improve timing performance.

4 Timing Prediction Framework
By predicting the timing of detailed routing during the global routing stage, potential timing

bottlenecks can be identified and optimized in advance. This allows design engineers to perform

targeted optimizations based on these predictions, thereby reducing the number of iterations

required in the detail routing stage. Traditionally, timing analysis after detailed routing necessitates

the completion of the detailed routing process followed by parasitic parameter extraction, which is

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiTPO: KAN-UNet Heterogeneous Network for Timing Prediction and Optimization at Global Routing XXX:11

Fig. 8. Architecture of KAN-UNet for timing prediction at global routing stage. Our KAN-UNet consists of
two branches: the encoder of UNet branch and the KAN branch.

Fig. 9. A route guide for a three-pin net with a Driver and two sinks. It provides an initial routing plan for
each net and also includes allocation information for each net across different metal layers.

time-consuming and impractical for scenarios requiring rapid optimization. To rapidly ascertain

the delay results of critical nets, in this work, we propose a machine learning-based framework to

quickly predict the wire delay after detail routing during the global routing stage, as illustrated in

Fig. 8.

4.1 Feature Selection
In machine learning-based prediction tasks, feature selection plays a crucial role in determining

the accuracy of the model. In this work, we have selected the following features to construct a

timing prediction model for predicting net delay after detailed routing. The physical features of the

nets we selected are extracted from the guide files generated during global routing. As shown in

the Fig. 9, the guide files provide detailed information for each net, including pins, wires, layers,

and vias. Additionally, the timing analysis engine computes critical parameters such as driver

slew, estimated parasitics capacitances and resistances. Congestion maps are calculated based

on the supply and demand of each routing layer, leveraging this comprehensive dataset. Based

on the different structures of the feature data, we categorize them into map-based features and

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:12 H. Liu, et al.

numerical features. Based on the different extraction objects, the features can also be categorized

into wire-based features and layout-based features.

Slew of the driver pin. The slew at the driver pin is one of the key factors in determining

net delay. A slower slew (i.e., slower transition speed) increases signal propagation time, since

the signal takes longer to reach the threshold level, ultimately resulting in increased delay. After

constructing the Steiner tree from the driver to the load pin during the GR stage, the slew features

are analyzed using a static timing analysis engine.

Parasitic resistance and capacitance. The total resistance and total capacitance values from

the driver pin to a specific sink load in the net. The resistance value from the driver to the load

is calculated by multiplying the resistance per unit length of each segment on each layer by its

length, and then summing these values for all segments.

Net length. The total wire length of all segments from the driver pin to the load pin. The length

of each segment from the driver to the load can be obtained from the guide files generated during

the global routing stage. The strong correlation between source-sink length and these net delay

characteristics underscores its importance in the predictive modeling of post-DR performance.

Incorporating source-sink length into the analysis is essential for achieving precise and reliable

post-DR timing predictions.

Number of sinks. In the field of VLSI design for nets with a large number of sinks, the Half-

Perimeter Wire Length (HPWL) often significantly underestimates the actual wire length. This

underestimation becomes particularly pronounced in multi-sink nets, where the post-GR and post-

DR wire lengths exhibit substantial discrepancies. These discrepancies arise due to the increased

likelihood of routing detours and the tendency for net lengths to exceed the simple bounding box

estimation provided by the HPWL metric. Consequently, this deviation underscores the limitations

of HPWL in accurately predicting the true wire length in complex multi-sink scenarios. Therefore,

after using net length as a feature, we also include the number of sinks in the feature set.

Estimated wire delay at post-GR. The wire length is estimated by calculating the number

of GCells that the signal path crosses and the size of each GCell, including its width and height.

If the signal path is horizontal or vertical, the wire length equals the number of GCells crossed

multiplied by the width or height of a GCell. Once the wire length is determined, the resistance

and capacitance of the signal path can be estimated. Assuming the resistance and capacitance per

unit length are known, the total resistance equals the wire length multiplied by the resistance

per unit length, and the total capacitance equals the wire length multiplied by the capacitance

per unit length. Finally, the Elmore delay model is used to estimate the signal propagation delay.

The Elmore delay model is a commonly used method for delay estimation, which estimates signal

propagation delay by multiplying the resistance and capacitance. In this case, the delay equals the

product of the resistance and capacitance, which is also the square of the wire length multiplied by

the resistance and capacitance per unit length. Although the estimated delay is not highly accurate,

it can provide some guidance for predicting the net delay after detailed routing.

Congestion map. The congestion map for each net is constructed by mapping the congestion

levels within the bins that lie inside the net’s bounding box. This map serves as a detailed rep-

resentation of the routing congestion within the net’s specific area, capturing the intensity and

distribution of congestion across the region. The congestion map provides valuable insights into

where routing resources are heavily utilized, indicating potential areas of congestion that could

lead to routing conflicts or increased delays. The congestion in a particular bin is essentially the

ratio of track demand to track supply within that bin and can be expressed as:𝐶𝑣 =
demand(𝑣)
supply(𝑣) . Since

the bounding boxes have different sizes, the dimensions of the input maps vary as well. Before

feeding the maps into the network, we process them by padding them to a uniform size. In this

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiTPO: KAN-UNet Heterogeneous Network for Timing Prediction and Optimization at Global Routing XXX:13

work, we use a size of 360 × 360, which can be adjusted, but it should be larger than the size of the

largest bounding box that the wire occupies. Based on the importance of the congestion map, we

also selected the mean, variance, maximum, and minimum values from the congestion map as the

numerical features for the wire.

Marked wire path map. For each net’s bounding box, all bins that the wire path passes through

from the driver pin to the load pin are marked as 1, while all other positions are marked as 0, forming

the marked wire path map. Marking the trajectory of the wire within the bounding box to form a

marked wire path map captures the spatial information of the wire layout, which has a significant

impact on wire delay. By incorporating features such as the congestion map, it effectively integrates

factors like congestion and neighboring interference into the feature set, further enhancing the

model’s performance and utility.

4.2 Neural Network Construction
Based on the selected map-based features and numerical features, we developed a KAN-UNet

network, which integrates UNet and KAN architectures, for feature extraction and timing prediction.

This hybrid network is designed to effectively capture both spatial and numerical characteristics

of the data, enabling more accurate and robust timing predictions. As the detailed structure of

the KAN-UNet network illustrated in Fig. 8, the entire KAN-UNet timing prediction framework

consists of two structures: the UNet branch and the KAN branch.

Modified UNet branch. Unlike the traditional UNet’s encoder part, we use CoordConv [18] to
replace the Conv layers in that section. CoordConv is a variant of the convolutional layer designed

to enhance the spatial awareness of convolutional neural networks. Traditional convolutional

layers lack explicit awareness of the positional information in the input feature maps. CoordConv

addresses this by adding coordinate information (x, y coordinates) to the input feature maps, and

optionally, radius information (r) can be added. Allowing the convolutional layers to perceive the

spatial position of the input data.

For the input map-based features 𝑋𝑚𝑎𝑝 ∈ R𝐵×𝐶×𝐻×𝑊 , where 𝐵 is the batch size, 𝐶 is the number

of channels, and 𝐻 and𝑊 are the height and width of the feature map, respectively. For each input

feature map, position information (x, y coordinates) is added to form the enhanced input, The

normalized coordinate channels 𝑥channel and 𝑦channel are defined as:

𝑥channel (ℎ,𝑤) =
2𝑤

𝑊 − 1 − 1, ℎ = 0, . . . , 𝐻 − 1; 𝑤 = 0, . . . ,𝑊 − 1. (1)

𝑦channel (ℎ,𝑤) =
2ℎ

𝐻 − 1 − 1, ℎ = 0, . . . , 𝐻 − 1; 𝑤 = 0, . . . ,𝑊 − 1. (2)

Here, 𝑥channel, 𝑦channel ∈ R1×𝐻×𝑊 .

If the radius channel is not used, the feature tensor after concatenation is given by:

𝑋 ′ = 𝑋map ⊕ 𝑥channel ⊕ 𝑦channel ∈ R𝐵×(𝐶+2)×𝐻×𝑊 , (3)

Where ⊕ represents the channel concatenation operation. And a standard 2D convolution is then

applied to 𝑋 ′, resulting in:

𝑌 = Conv(𝑋 ′). (4)

The convolutional block used for feature extraction consists of a module composed of two

CoordConv layers, batch normalization, and the ReLU activation function. The output 𝑌 of the

input feature map after passing through the convolutional layers can be expressed as:

𝑌 = ReLU(BatchNorm(CoordConv(ReLU(BatchNorm(CoordConv(𝑋𝑚𝑎𝑝)))))) . (5)

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:14 H. Liu, et al.

After reducing the resolution through a max-pooling operation and passing the output feature 𝑌 ′

through several convolution layers, global average pooling is then applied, followed by two fully

connected layers for the output. These can be expressed as:

𝑌 ′ = 𝑓down (𝑌), (6)

𝑍 = GlobalAvgPool(𝑌 ′), (7)

𝑍 = ReLU(Linear(𝑍)), (8)

𝑋map_encoded = Linear(𝑍). (9)

Here, 𝑓down denotes the combined operation of multiple stages of downsampling and convolution.

KAN branch. Kolmogorov-Arnold Networks (KAN) [20] is a neural network architecture

based on the Kolmogorov-Arnold super approximation theorem. The theorem states that any

continuous multivariable function 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) can be represented as a combination of a set of

one-dimensional functions. Specifically, 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) can be expressed in the following form:

𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) =
2𝑛+1∑︁
𝑖=1

𝜙𝑖

(
𝑛∑︁
𝑗=1

𝜆𝑖 𝑗 · (𝑥 𝑗 +𝜓 𝑗)
)
. (10)

where 𝜙𝑖 and𝜓 𝑗 are certain continuous univariate functions, and 𝜆𝑖 𝑗 are appropriate constants.

For numerical feature input, 𝑋num ∈ R𝐵×𝐷 , where 𝐷 is the dimension of the numerical features.

The encoded map features and numerical features are concatenated to form the fused feature:

𝑋fused = Concat(𝑋map_encoded, 𝑋num), (11)

Then, the fused features are processed through the KAN module for timing prediction:

𝑇 = KAN(𝑋fused). (12)

Where 𝐵 is the batch size, and𝑇 ∈ R𝐵×1 is the final output of the model, representing the predicted

net delay.

5 Timing Optimization
The timing prediction of post-detailed routing net delays plays a crucial role in guiding timing

optimization during the Global Routing stage. In this work, we introduce two optimization methods:

net reorder and net re-route.

5.1 Timing Aware Net Reorder
As shown in Fig. 10 and Algorithm 1, the net reorder optimization strategy’s process and algorithm

implementation are detailed. First, it is necessary to identify the target nets for reordering. Based on

the analysis in Section 3.1.2 for Fig. 3, as for most nets, the wire delay predicted during GR stage is

relatively close to the actual wire delay observed at post-DR. However, there is a noticeable spread

around the line, particularly as the delays increase. This observation suggests that, for certain nets,

the wire delay estimated during global routing deviates significantly from the actual delay observed

after detailed routing. When prioritizing the routing of nets with larger delays, there is substantial

space for optimization, making it unnecessary to predict and reorder every net.

In this work, an initial round of detailed routing is performed, followed by timing analysis.

The nets are then sorted in descending order based on their delay values, approximately the top

5,000 nets with the largest delays are selected. For these nets, delay predictions are made using a

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiTPO: KAN-UNet Heterogeneous Network for Timing Prediction and Optimization at Global Routing XXX:15

Fig. 10. Flow of the net reorder optimization strategy guided by timing prediction.

pre-trained timing prediction model, based on features from the global routing stage. This step

corresponds to Step 1 in Algorithm 1. The nets are then reordered according to the predicted

delay results, with priority assigned to those with the highest predicted delay values. This step

corresponds to Step 2 in Algorithm 1. Nets with higher predicted delays are identified as critical

and are given higher priority during the detailed routing process. By sorting nets according to

their predicted delays, the DR stage can prioritize the routing of critical nets earlier in the process

when routing resources are more available. This reduces the likelihood of these nets encountering

congestion and suboptimal routing paths, which could exacerbate delay issues. Subsequently,

routing is performed according to the assigned priorities, including both global routing and detailed

routing, to obtain optimized timing results. This method effectively mitigates potential timing

violations by addressing the most critical nets upfront, leading to a more optimized overall timing

performance.

If further iterative optimization is needed, the previous step only needs to proceed to the global

routing stage. Based on the results from global routing, the pre-trained model is used again to

predict the selected wire delay, reorder the nets, and assign new priorities for the next iteration of

optimization. After several iterations, the process proceeds to the detailed routing stage, where

timing analysis is performed again to update the reordered nets for the next round of optimization.

In this work. we do not include iterative optimization but provide extensibility for future iterative

optimization efforts.

5.2 Net Candidate Generation
As shown in Fig. 11, the main process for generating candidate net path topologies is introduced.

First, it is essential to identify the critical nets that require re-routing. After performing an initial

round of detailed routing, a static timing analysis engine is used to report the critical timing paths.

The nets within these critical paths are then sorted by delay, and nets with delays exceeding a

certain threshold are selected as critical paths. This is because, although some nets may be part of

a critical path, their delay may be too small to yield significant optimization benefits.

Once the critical nets are identified (including the net names, source pin names, and sink

pin names), the enhanced A* algorithm described in Algorithm 2 is applied. This enhanced A*

algorithm introduces perturbations when calculating the Manhattan distance, incorporates the

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:16 H. Liu, et al.

Algorithm 1 Net Reorder Algorithm for Timing Optimization

1: Input: List of nets 𝑁 , Predicted wire delays 𝐷 for each net

2: Output: Sorted list of nets with assigned routing priorities

3: Initialize an empty list 𝑃 to store nets with their priorities

4: // Step 1: sorting based on predicted delay
5: Sort nets 𝑁 based on the corresponding predicted delays 𝐷 in descending order

6: for each net 𝑛𝑖 in sorted list 𝑁 do
7: Calculate the priority 𝑝𝑖 based on the predicted delay 𝐷𝑖

8: Add (𝑛𝑖 , 𝑝𝑖) to list 𝑃

9: end for
10: // Step 2: priority assignment
11: Assign routing priority to each net in 𝑃 , starting with the highest priority for the net with the

largest predicted delay

12: for each (𝑛𝑖 , 𝑝𝑖) in list 𝑃 do
13: Route net 𝑛𝑖 with priority 𝑝𝑖
14: Ensure net 𝑛𝑖 is routed with consideration of optimal wire length

15: end for
16: return List of routed nets with assigned priorities

Fig. 11. The procedure for generating multiple candidate paths for the critical path and producing the
corresponding guide file for each candidate.

utilization_map into the tentative_g_score, and accounts for turn penalties to discourage excessive

turns in the routing path. The A* algorithm is thereby biased toward selecting paths that pass

through regions with lower congestion. This helps to reduce congestion globally and optimize the

overall design. The enhanced A* algorithm generates multiple topological paths, which are then

sorted in descending order based on their average congestion value. To provide a more intuitive

description and visual representation of the re-routing algorithm, Fig. 12 is presented. In the left

image, we show the Steiner tree routing information for the critical wire in the original critical

net, where the wire may pass through congested areas. In the right image, we use the improved A*

algorithm with random perturbation and Steiner point penalties to generate ten candidate wires.

By incorporating the utilization map into the g_score, the generated candidate wires avoid passing

through congested areas. Additionally, the candidate wires are sorted in ascending order based on

the average utilization of the Gcells they pass through. To expedite the optimization process, this

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiTPO: KAN-UNet Heterogeneous Network for Timing Prediction and Optimization at Global Routing XXX:17

Fig. 12. Comparison of routing paths between original wires and generated candidate wires in the congestion
map. Original wires may traverse congested areas, whereas the generated candidate wires avoid these regions
and are sorted based on their average congestion levels.

work selects only the 1st, 3rd, 5th, 7th, and 10th paths as candidate nets, and a guide is generated

for each candidate net.

The Algorithm 2 implements the enhanced A* search algorithm for pathfinding from a driver pin

to a target pin (sink pin), specifically designed for multi-net reconstruction tasks. The algorithm

takes as input a utilization_map, which records congestion levels in the routing area; a start point

(driver pin); a goal point (sink pin); a perturbation parameter that introduces randomness into

the heuristic evaluation to explore multiple potential paths; and a turn_penalty coefficient that

discourages frequent direction changes to promote straighter routes.

The algorithm begins by initializing the priority queue open_list with the start node and setting

up the came_from, g_score, and f_score maps to track the path and costs. In each iteration of the

main loop (lines 7-40), the node with the lowest f_score is selected as the current node. If the

current node is the goal, the algorithm reconstructs and returns the optimal path by backtracking

through the came_from map.

For each neighboring node in the four cardinal directions (up, right, down, left), the algorithm

performs the following steps (lines 17-39):

Boundary and utilization check: It first checks if the neighbor is within the grid bounds and

not in a highly congested area by referencing the utilization_map. Neighbors that are out of bounds

or have a utilization value greater than 1 are skipped.

Turn detection and penalty: The algorithm determines whether moving to the neighbor would

result in a turn by using the IsStraightLine function. If a turn is detected, a turn_penalty is added

to the tentative g_score, encouraging straighter paths.

Score calculation and update: It calculates the tentative g_score for the neighbor. If this score
is better than any previously recorded score for the neighbor, the came_from, g_score, and f_score

maps are updated, and the neighbor is added to the open_list for further exploration.

If the open_list is exhaustedwithout reaching the goal, the algorithm returns None, indicating that

no viable path exists. However, in the actual physical design routing process, it is essential to find a

viable path. The Heuristic function (lines 42-45) calculates the Manhattan distance between two

nodes and adds a random perturbation to introduce variability in path selection. The IsStraightLine

function determines whether moving from the previous node to the current node and then to the

neighbor maintains a straight line, thereby detecting turns.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:18 H. Liu, et al.

Algorithm 2 Enhanced A* Algorithm for Net Candidate Generation

1: Input: 𝑠𝑡𝑎𝑟𝑡 (Driver pin), 𝑔𝑜𝑎𝑙 (Sink pin), 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑚𝑎𝑝 , 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 (Perturbation param-

eter), 𝑡𝑢𝑟𝑛_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (Turn penalty coefficient)

2: Output: 𝑝𝑎𝑡ℎ (Multiple paths from the start point to the goal point)

3: Initialize priority queue 𝑜𝑝𝑒𝑛_𝑙𝑖𝑠𝑡 and push (0, 𝑠𝑡𝑎𝑟𝑡) into 𝑜𝑝𝑒𝑛_𝑙𝑖𝑠𝑡
4: 𝑐𝑎𝑚𝑒_𝑓 𝑟𝑜𝑚 ← {}
5: 𝑔_𝑠𝑐𝑜𝑟𝑒 [𝑠𝑡𝑎𝑟𝑡] ← 0

6: 𝑓 _𝑠𝑐𝑜𝑟𝑒 [𝑠𝑡𝑎𝑟𝑡] ← 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 (𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙, 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛)
7: while 𝑜𝑝𝑒𝑛_𝑙𝑖𝑠𝑡 not empty do
8: Pop (𝑓 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡) with lowest 𝑓 _𝑠𝑐𝑜𝑟𝑒 from 𝑜𝑝𝑒𝑛_𝑙𝑖𝑠𝑡

9: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑔𝑜𝑎𝑙 then
10: 𝑝𝑎𝑡ℎ ← []
11: while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∈ 𝑐𝑎𝑚𝑒_𝑓 𝑟𝑜𝑚 do
12: Prepend 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to 𝑝𝑎𝑡ℎ

13: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑐𝑎𝑚𝑒_𝑓 𝑟𝑜𝑚[𝑐𝑢𝑟𝑟𝑒𝑛𝑡]
14: end while
15: Return 𝑝𝑎𝑡ℎ

16: end if
17: for all 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∈ {(0, 1), (1, 0), (0,−1), (−1, 0)} do
18: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
19: // Check if neighbor is out of bounds or over-utilized
20: if 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 then out of bounds or 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑚𝑎𝑝 [𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟] > 1

21: continue
22: end if
23: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∈ 𝑐𝑎𝑚𝑒_𝑓 𝑟𝑜𝑚 then
24: 𝑝𝑟𝑒𝑣 ← 𝑐𝑎𝑚𝑒_𝑓 𝑟𝑜𝑚[𝑐𝑢𝑟𝑟𝑒𝑛𝑡]
25: 𝑖𝑠_𝑡𝑢𝑟𝑛 ← ¬𝐼𝑠𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡𝐿𝑖𝑛𝑒 (𝑝𝑟𝑒𝑣, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟)
26: else
27: 𝑖𝑠_𝑡𝑢𝑟𝑛 ← 𝐹𝑎𝑙𝑠𝑒

28: end if
29: // Apply turn penalty if a turn is made
30: 𝑡𝑢𝑟𝑛_𝑐𝑜𝑠𝑡 ← 𝑡𝑢𝑟𝑛_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 if 𝑖𝑠_𝑡𝑢𝑟𝑛 else 0
31: // Calculate tentative g-score with turn penalty
32: 𝑡𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒_𝑔← 𝑔_𝑠𝑐𝑜𝑟𝑒 [𝑐𝑢𝑟𝑟𝑒𝑛𝑡] + 1 + 𝑡𝑢𝑟𝑛_𝑐𝑜𝑠𝑡
33: if 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ∉ 𝑔_𝑠𝑐𝑜𝑟𝑒 or 𝑡𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒_𝑔 < 𝑔_𝑠𝑐𝑜𝑟𝑒 [𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟] then
34: 𝑐𝑎𝑚𝑒_𝑓 𝑟𝑜𝑚[𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟] ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

35: 𝑔_𝑠𝑐𝑜𝑟𝑒 [𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟] ← 𝑡𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒_𝑔

36: 𝑓 _𝑠𝑐𝑜𝑟𝑒 [𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟] ← 𝑡𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒_𝑔 + 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 𝑔𝑜𝑎𝑙, 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛)
37: Push (𝑓 _𝑠𝑐𝑜𝑟𝑒 [𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟], 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) into 𝑜𝑝𝑒𝑛_𝑙𝑖𝑠𝑡
38: end if
39: end for
40: end while
41: Return None
42: function Heuristic(𝑎, 𝑏, 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛)

43: // Heuristic with random perturbation to diversify paths
44: return Manhattan_Distance(𝑎, 𝑏) + perturbation × Random_Value()

45: end function

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiTPO: KAN-UNet Heterogeneous Network for Timing Prediction and Optimization at Global Routing XXX:19

This enhanced A* algorithm effectively integrates random perturbation to diversify pathfinding,

turn penalties to promote straighter routes, and a utilization map to avoid congested areas. These

modifications make the algorithm particularly suitable for net routing.

5.3 Net Evaluation and Selection
As shown in Fig. 13, after generating the guide files for each candidate path topology of each

critical net, these guides are employed in the global routing process, followed by timing analysis at

the global routing stage. This process yields the candidate net features necessary for the timing

prediction model. Subsequently, the pre-trained wire delay prediction model is utilized to predict

the wire delays for these candidate nets. The predicted delays are compared with each other as well

as with the delay estimates derived from the Steiner tree topologies generated via FLUTE. The guide

topology corresponding to the candidate net with the lowest predicted delay is selected for further

routing. After determining the optimal guide topology for each selected critical net, non-critical

nets continue to utilize their initial Steiner tree topologies. Global routing and subsequent detailed

routing are then executed based on these guide files, followed by an evaluation of the post-DR wire

delay, specifically assessing any improvements in WNS and TNS.

The Algorithm 3 takes as input a list of critical nets 𝑁critical, a utilization map𝑈 , and the start

and goal points (start𝑖 , goal𝑖) for each net. Additionally, it requires a perturbation parameter P that

is used in the A* algorithm to introduce randomness in the heuristic function. The output of the

algorithm is the set of re-routed paths for the critical nets, where each path is optimized to minimize

the delay based on the predicted timing results. In Step 1, the algorithm uses the A* algorithm to

generate multiple candidate paths for each critical net. The paths are generated by considering the

congestion information provided in the utilization map U and the start and goal points for each net.

The perturbation parameter P is used to explore various potential routing paths. In Step 2, for each

candidate path generated in the previous step, the algorithm calculates the predicted delay using a

timing prediction model. This step involves evaluating the timing performance of each candidate

path, which is essential for determining the best routing option. In Step 3, the algorithm identifies

the optimal path for each critical net by leveraging the predicted delays calculated in the previous

step. The path with the minimum predicted delay is selected as the best candidate. In Step 4, the

algorithm compares the predicted delay of the selected optimal path with the delay of the initial

routing path generated by the FLUTE algorithm. If the delay of the optimal path is less than that of

the initial path, the algorithm selects the optimal path for re-route. Otherwise, it retains the initial

path. Finally, the algorithm re-routes each critical net using the selected path, resulting in a set of

re-routed paths that are optimized for timing performance. The re-routed paths are returned as the

output of the algorithm. This process systematically re-routes critical nets using the enhanced A*

algorithm for path generation, followed by timing prediction and comparison, ensuring that the

best possible routing paths are chosen for optimal timing performance.

6 Experimental Results
6.1 Experimental Setting
The timing prediction algorithm and model were implemented using Python and Pytorch on a

Linux machine with two NVIDIA A100 GPUs, 4 Intel Xeon Platinum 8380 CPUs at 2.3 GHz, and

1T RAM. We used the “ysyx” design set
1
with RTL to generate DEF files on the 28nm process

using a commercial tool. A portion of the features and labels required for timing prediction were

extracted using the open-source AiEDA framework [12], while the timing optimization framework

is implemented based on the iEDA-iRT [14, 29] and open-source static timing analysis tool. The

1
ysyx is a RISC-V processor chip talent plan.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:20 H. Liu, et al.

Fig. 13. The procedure for selecting the timing-optimal guide file for each critical path from the candidate
paths with the timing prediction model.

Algorithm 3 Re-Route Strategy Using A* Algorithm for Path Generation

1: Input: List of critical nets 𝑁𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 , Utilization map𝑈 , Start (Source pin) and goal (Sink pin)

points for each net (𝑠𝑡𝑎𝑟𝑡𝑖 , 𝑔𝑜𝑎𝑙𝑖), Perturbation parameter 𝑃

2: Output: Re-routed paths for critical nets

3: for net 𝑛𝑖 in 𝑁𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 do
4: // Step 1: path generation with A* algorithm
5: Generate multiple candidate paths 𝑃𝑎𝑡ℎ𝑠𝑖 using the A* algorithm with inputs 𝑈 , 𝑠𝑡𝑎𝑟𝑡𝑖 ,

𝑔𝑜𝑎𝑙𝑖 , and 𝑃

6: // Step 2: timing prediction for each path
7: for path 𝑝 𝑗 in 𝑃𝑎𝑡ℎ𝑠𝑖 do
8: Calculate predicted delay 𝐷𝑖 𝑗 for path 𝑝 𝑗 using the timing prediction model

9: end for
10: // Step 3: selection of the optimal path
11: Select the path 𝑝𝑏𝑒𝑠𝑡 with the minimum predicted delay 𝐷𝑖 𝑗 from 𝑃𝑎𝑡ℎ𝑠𝑖
12: // Step 4: comparison with initial routing
13: Compare the predicted delay 𝐷𝑏𝑒𝑠𝑡 of 𝑝𝑏𝑒𝑠𝑡 with the delay 𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙 of the initial FLUTE-

generated routing path

14: if 𝐷𝑏𝑒𝑠𝑡 < 𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙 then
15: Choose 𝑝𝑏𝑒𝑠𝑡 as the final routing path for net 𝑛𝑖
16: else
17: Retain the initial routing path for net 𝑛𝑖
18: end if
19: Re-route net 𝑛𝑖 using the selected path

20: end for
21: return Re-routed paths for critical nets

descriptive statistics of these benchmark circuits are summarized in Table 1. The upper six circuits

are used for training along with the lower three are utilized for testing. The training was performed

on a single NVIDIA A100 GPU with the datasets. We employed the AdamW optimizer with an

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiTPO: KAN-UNet Heterogeneous Network for Timing Prediction and Optimization at Global Routing XXX:21

initial learning rate of 0.00056, adjusted via the CosineAnnealingLR scheduler, and used Mean

Squared Error (MSE) as the loss function. Training the KAN-UNet model took approximately 8

hours in total, with each epoch taking about 12 minutes to complete. We trained for 40 epochs

using a batch size of 32. However, this is a one-time cost, if trained in parallel on multiple GPUs,

the total training time can be further reduced. In timing prediction tasks, Mean Absolute Error

(MAE) and Max Absolute Error (MaxAE) are used to measure accuracy, while improvements in

post-DR TNS and WNS are used to evaluate the effectiveness of optimization strategies during the

timing optimization process.

Table 1. Training and Testing Data Statistics.

Area (um×um) Cells Net num Utilization

ysyx_0 370.02 × 370 88860 86071 0.63

Train

ysyx_1 371 × 371 95581 92630 0.65

ysyx_2 394.94 × 395 97207 98064 0.62

ysyx_3 434 × 434 145160 141757 0.70

ysyx_4 683.06 × 683 283285 275312 0.50

ysyx_5 644 × 644 244476 239401 0.50

ysyx_6 763.98 × 764 350494 341425 0.50

Testysyx_7 791.98 × 792 379679 371241 0.50

ysyx_8 971.04 × 971 469977 457585 0.40

Table 2. Experimental results assessing the accuracy of timing prediction for net reorder. The ysyx_0 to
ysyx_5 were used for training, while the rest constituted the test set. “MAE” denotes the mean absolute
error metric and the“MaxAE” means the max absolute error metric. “SCC” refers to the Spearman correlation
coefficient.

Circuit

Post-GR Machine learning [4] KAN-UNet (Ours) Runtime (s)

MAE(ns) MaxAE(ns) SCC MAE(ns) MaxAE(ns) SCC MAE(ns) MaxAE(ns) SCC DR+STA KAN-UNet Speed-up

ysyx_0 0.0008 0.0180 0.86 0.0006 0.0058 0.97 0.0006 0.0084 0.91 1920 5.69 337×
ysyx_1 0.0007 0.0110 0.88 0.0006 0.0004 0.97 0.0005 0.0066 0.92 2040 3.82 534×
ysyx_2 0.0008 0.0215 0.85 0.0006 0.0071 0.96 0.0006 0.0116 0.89 2100 3.74 561×
ysyx_3 0.0011 0.0107 0.79 0.0004 0.0066 0.99 0.0008 0.0093 0.86 2580 3.81 377×
ysyx_4 0.0019 0.0247 0.68 0.0007 0.0093 0.99 0.0013 0.0138 0.81 3569 3.50 1020×
ysyx_5 0.0019 0.0218 0.70 0.0007 0.0068 0.99 0.0012 0.0135 0.81 3120 3.76 830×
Average 1.000 1.000 0.79 0.500 0.334 0.98 0.692 0.585 0.87 2555 4.05 631×
ysyx_6 0.0023 0.0222 0.60 0.0017 0.0232 0.75 0.0015 0.0154 0.77 4140 3.54 1169×
ysyx_7 0.0024 0.0231 0.55 0.0017 0.0291 0.72 0.0016 0.0180 0.74 4320 3.45 1252×
ysyx_8 0.0030 0.0242 0.45 0.0023 0.0215 0.64 0.0020 0.0185 0.67 4860 3.36 1446×
Average 1.000 1.000 0.53 0.731 1.060 0.70 0.654 0.746 0.73 4440 3.45 1287×

6.2 Accuracy Evaluation on Timing Prediction
To evaluate the performance of the timing prediction model, we compare our results with recent

work, specifically, the “Machine Learning [4]” study. It is important to note that the proposed

machine learning-based model used in [4] differs from ours, the work utilized the wire-based

features, which did not effectively capture the spatial characteristics of layout congestion. Table 2

shows the experimental results assessing the accuracy of timing prediction for net reorder. “MAE”

denotes the mean absolute error metric and the “MaxAE” means the max absolute error metric.

"SCC" refers to the Spearman correlation coefficient, which is employed to assess the correlation

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:22 H. Liu, et al.

between two variables. In this study, it is utilized to measure the correlation between wire delays

during the GR and DR stages, as well as the correlation between the wire delays predicted by

different models and the actual wire delays after DR. Column “Post-GR” shows the mean absolute

error and the max absolute error between the estimated wire delay at post-GR using the method

introduced in Section 4.1 with the ground truth wire delay calculated at post detailed routing. The

“Machine learning” column shows the results using the proposed prediction model in [4] with the

features in the work. The “KAN-UNet (ours)” column exhibits the results of the KAN-UNet timing

prediction model. As for the trained circuits, compared to the wire delay estimated at post-GR stage,

the proposed prediction framework achieves a 30.8% and 41.5% improvement in terms of MAE and

MaxMAE, respectively. On the test circuits, our model achieved improvements of 34.6% in MAE and

25.4% in MaxAE, respectively. Although the machine learning-based method performed well on

the training set, its performance on the test circuits showed a 26.9% improvement in MAE, which

is slightly lower than our model’s results. Additionally, its MaxAE decreased by 6.0%. This suggests

that the improvements observed on the training set may be due to some degree of overfitting.

In this study, we assess the correlations betweenwire delays at various stages and their predictions

from different models by employing the Spearman correlation coefficient (SCC), which is defined

as:

SCC = 1 −
6

∑𝑛
𝑖=1 𝑑

2

𝑖

𝑛 (𝑛2 − 1) (13)

Where 𝑑𝑖 represents the difference in ranks for each pair of data points, 𝑛 is the total number of

data points.

The baseline correlation, measured by the Spearman correlation coefficient (SCC), between wire

delays during the GR and DR stages, yields average SCC values of 0.79 on the training set and 0.53

on the test set. In contrast, a Machine Learning-based model achieves significantly higher average

SCC values of 0.98 on the training set and 0.70 on the test set when predicting wire delays compared

to the actual DR wire delays. Meanwhile, the proposed KAN-UNet model demonstrates average

SCC values of 0.87 on the training set and 0.73 on the test set for the same task. The high SCC

value of 0.98 achieved by the machine learning-based model on the training set suggests potential

overfitting, as the model may have learned to capture specific patterns unique to the training

circuits, which do not generalize well to the test circuits, resulting in a lower SCC of 0.70. On the

other hand, the KAN-UNet model exhibits a more balanced performance, with a slightly lower but

still strong SCC of 0.87 on the training set and a higher SCC of 0.73 on the test set compared to

the machine learning-based model. This indicates that the KAN-UNet model generalizes better

to unseen circuits, striking a more effective trade-off between fitting the training circuits and

maintaining robustness on the test circuits.

For a detailed demonstration of the improvements, Fig. 14 presents the comparative results on the

training circuit ysyx_0, the left figure compares the wire delays at the GR stage and the wire delays

predicted by the proposed KAN-UNet model against the corresponding post-DR wire delays. We

can observe that the wire delay distribution predicted by KAN-UNet model is more closely aligned

around the 𝑦 = 𝑥 line, demonstrating better consistency. The right figure presents a comparison of

the wire delays predicted by the machine learning model and the KAN-UNet model against the

corresponding DR wire delays. The wire delays predicted by the machine learning model align

more closely with the 𝑦 = 𝑥 line, indicating a potential issue of overfitting, as evidenced by the

lower correlation on the test set. This phenomenon highlights the importance of balancing model

complexity and generalization to ensure robust performance across different circuits. Similarly,

Fig. 15 shows the comparison results for the test circuit ysyx_6, the wire delays predicted by the

proposed KAN-UNet model are more closely clustered around the 𝑦 = 𝑥 line when compared to the

DR wire delays, significantly improving timing consistency. In contrast to the predictions from the

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiTPO: KAN-UNet Heterogeneous Network for Timing Prediction and Optimization at Global Routing XXX:23

Fig. 14. Comparison of global routing wire delay and KAN-UNet predicted wire delay with post-DR wire
delay (left figure) and the comparison of machine learning and KAN-UNet predicted delays with DR wire
delay (right figure) for trained circuit ysyx_0.

Fig. 15. Comparison of global routing wire delay and KAN-UNet predicted wire delay with post-DR wire
delay (left figure) and the comparison of machine learning and KAN-UNet predicted delays with DR wire
delay (right figure) for test circuit ysyx_6.

machine learning model, our approach demonstrates enhanced consistency. Further linear fitting

of the predicted wire delays reveals that the results from the proposed model exhibit superior

consistency. It is also important to note that during the net-reorder process, we need to rank the

nets and assign priorities based on wire delay. Accordingly, Fig. 14 and Fig. 15 present the delay

comparison results for thousands of nets that participated in the reorder optimization strategy.

The “DR+STA” column represents the time required to obtain post-DR delays by performing

detailed routing followed by STA during the post-GR stage. The “KAN-UNet” column, on the other

hand, refers to the inference time using the network proposed in this paper during the post-GR stage.

Notably, the results indicate an average speedup of 1287 × on the test circuits, with a maximum

improvement of 1446 ×. The acceleration becomes increasingly pronounced as the number of nets

in the circuit grows, highlighting its necessity for efficient iterative optimization.

6.3 Timing Improvement on Timing Optimization
To validate the effectiveness of the optimization strategies proposed in this work, we conducted

ablation experiments. Table 3 presents a comparison of TNS and WNS after detailed routing under

three different conditions: using the basic iRT tool for global routing and detailed routing, applying

the net reorder strategy, and combining both net reorder and net re-route strategies. These results

help demonstrate the impact of each strategy on the timing performance of the circuits after DR.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:24 H. Liu, et al.

Fig. 16. The comparison of TNS (left) and WNS (right) under three different scenarios: the baseline using iRT,
the results after incorporating the net reorder strategy, and the further improvements achieved by combining
both the net reorder and re-route strategies.

Fig. 17. The comparison of TNS (left) and WNS (right) under the combined strategies of net reorder and net
re-route. The results are compared using the baseline iRT as a reference, along with the results guided by the
machine learning method [4] and the proposed KAN-UNet model for timing optimization.

The iRT results show consistent baseline values for both TNS and WNS, normalized to 1.0000 across

all circuits.

In order to improve readability, the values within the “TNS (ns)” column were rounded before

making comparisons. The data in “ΔTNS(%)” and “ΔWNS(%)” columns respectively indicate the

improvement ratios of TNS and WNS, compared to the baseline iRT, after applying the optimization

strategies. On the training circuits, the implementation of the net reorder strategy resulted in

noticeable improvements in timing performance, with TNS and WNS increasing by 4.1% and 4.9%,

respectively, following detailed routing. When the re-route strategy was subsequently integrated

into the process, the overall improvements in TNS and WNS reached 4.4% and 6.3%, and the maxi-

mum improvements reached 11.1% and 8.2%, respectively. After incorporating the re-route step,

the overall trend remained positive, indicating a substantial improvement in timing performance.

For the test circuits, after applying the reorder strategy, TNS and WNS improved by 1.3% and 2.8%,

respectively. When further combined with the re-route strategy, these improvements increased

to 2.0% and 4.2%, respectively, with the maximum gains reaching 4.7% and 5.9%. This suggests

that combining net reorder with net re-route effectively improves the circuit’s timing character-

istic, it also demonstrates that the two optimization strategies also possess strong generalization

capabilities.

From the data in the Table 3, the total wirelength “T-WL”, the total overflow “T-OF” and the

design rule violation “#DRV” are listed. After the net reorder optimization, both total wire length

and total overflow did not increase, indicating that the impact of reorder strategy on total wire

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiTPO: KAN-UNet Heterogeneous Network for Timing Prediction and Optimization at Global Routing XXX:25

Ta
bl
e
3.

C
om

pa
ri
so
n
of

TN
S
(T
ot
al
N
eg
at
iv
e
Sl
ac
k)

an
d
W
N
S
(W

or
st
N
eg
at
iv
e
Sl
ac
k)

aft
er

de
ta
ile
d
ro
ut
in
g
un

de
r
th
re
e
di
ff
er
en
t
co
nd

it
io
ns
:u

si
ng

th
e
ba
si
c

iR
T
to
ol

fo
r
gl
ob

al
ro
ut
in
g,
ap

pl
yi
ng

th
e
ne
t
re
or
de
r
st
ra
te
gy
,a
nd

co
m
bi
ni
ng

bo
th

ne
t
re
or
de
r
an

d
ne
t
re
-r
ou

te
st
ra
te
gi
es
.T

he
pr
op

os
ed

K
A
N
-U

N
et

m
od

el
is

ut
ili
ze
d
fo
r
ti
m
in
g
pr
ed
ic
ti
on

to
gu

id
e
th
e
tw

o
ti
m
in
g
op

ti
m
iz
at
io
n
st
ra
te
gi
es
.“
T-
W
L”

de
no

te
s
th
e
to
ta
lw

ir
e
le
ng

th
,w

hi
le
“T
-O

F”
si
gn

ifi
es

th
e
to
ta
lo
ve
rf
lo
w
.

“#
D
R
V
”
m
ea
ns

th
e
de
si
gn

ru
le
vi
ol
at
io
n.

C
i
r
c
u
i
t

i
R
T
[
1
4
]

i
R
T
+
r
e
o
r
d
e
r

i
R
T
+
r
e
o
r
d
e
r
+
r
e
-
r
o
u
t
e

T
-
W
L

T
-
O
F

#
D
R
V
T
N
S
(
n
s
)
W
N
S
(
n
s
)

T
-
W
L

T
-
O
F

#
D
R
V
Δ
D
R
V
(%
)
T
N
S
(
n
s
)
Δ
T
N
S
(%
)
W
N
S
(
n
s
)
Δ
W
N
S
(%
)

T
-
W
L

T
-
O
F

#
D
R
V
Δ
D
R
V
(%
)
T
N
S
(
n
s
)
Δ
T
N
S
(%
)
W
N
S
(
n
s
)
Δ
W
N
S
(
%
)

y
s
y
x
_
0

9
3
8
4
4
3

6
4
4
2

2
1
4

−2
7
9
−0

.7
0
2

9
3
8
4
4
2

6
4
4
2

2
3
4

9
.3

−2
6
9

3
.6

-
0
.6
6
8

4
.8

9
4
0
6
0
1

6
6
7
8

2
4
8

1
5
.9

−2
4
8

1
1
.1

-
0
.6
6
1

5
.8

y
s
y
x
_
1

8
9
2
9
5
6

4
7
1
0

1
6
1
−1

1
2
2
−0

.9
8
9

8
9
2
9
1
7

4
7
1
0

1
5
4

−4
.3

−1
0
5
4

6
.1

-
0
.9
3
3

5
.7

8
9
4
3
8
7

4
9
4
4

1
6
8

4
.3

−1
0
5
7

5
.8

-
0
.9
0
8

8
.2

y
s
y
x
_
2

9
6
5
6
1
0

4
6

3
1
9

−2
1
4
−0

.9
2
5

9
6
5
7
6
5

4
6

3
1
9

0
.0

−2
0
4

8
.9

-
0
.8
6
7

6
.3

9
6
7
8
3
3

4
2

3
2
0

0
.3

−2
0
2

9
.8

-
0
.8
5
3

7
.8

y
s
y
x
_
3

1
5
3
2
5
7
8
1
4
0
2
6

4
8
9
−2

8
5
1
−1

.4
9
5

1
5
3
2
5
3
0
1
4
0
2
6

5
1
4

5
.1

−2
6
8
4

5
.9

-
1
.3
9
1

6
.9

1
5
3
4
4
6
9
1
4
4
9
2

5
3
6

9
.6

−2
7
8
0

2
.5

-
1
.4
3
8

3
.8

y
s
y
x
_
4

3
0
9
8
8
6
0
1
6
8
1
8

3
3
3
−2

9
9
0
−1

.4
0
0

3
0
9
9
1
7
4
1
6
8
1
8

3
6
3

9
.0

−2
9
3
6

1
.8

-
1
.3
6
4

2
.6

3
1
0
2
1
8
0
1
7
3
3
4

3
6
0

8
.1

−2
9
5
1

1
.3

-
1
.3
2
7

5
.2

y
s
y
x
_
5

2
8
9
2
3
6
1
1
3
8
2
2

2
1
7
−2

1
1
7
−1

.3
4
5

2
8
9
2
3
9
4
1
3
8
2
2

2
3
8

9
.7

−2
0
5
8

2
.8

-
1
.3
0
6

2
.9

2
8
9
5
8
6
3
1
4
0
0
2

2
2
3

2
.8

−2
1
1
6

0
.0

-
1
.2
4
9

7
.1

A
v
e
r
a
g
e

1
.0
0
0
0

1
.0
0
0
0
1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0
0

1
.0
0
0
0
1
.0
4
8

4
.8

0
.9
5
9

4
.1

0
.9
5
1

4
.9

1
.0
0
1
6

1
.0
1
2
7
1
.0
6
8

6
.8

0
.9
5
6

4
.4

0
.9
3
7

6
.3

y
s
y
x
_
6

3
9
5
9
5
7
7
1
8
9
3
6

4
1
4
−3

7
1
6
−1

.3
7
4

3
9
5
9
5
1
7
1
8
9
3
6

4
7
3

1
4
.3

−3
6
1
5

2
.7

-
1
.3
2
4

3
.6

3
9
6
0
9
3
6
1
9
2
1
8

5
1
1

2
3
.4

−3
5
4
2

4
.7

-
1
.2
9
3

5
.9

y
s
y
x
_
7

4
1
8
3
1
8
4
2
1
5
4
8

5
7
9
−1

3
6
4
5
−1

.6
5
2

4
1
8
3
2
0
0
2
1
5
4
8

5
3
4

−7
.8

−1
3
7
0
7
−0

.4
-
1
.6
0
0

3
.1

4
1
8
5
3
1
4
2
1
6
3
2

5
8
7

1
.4

−1
3
5
6
7

0
.6

-
1
.5
9
3

3
.6

y
s
y
x
_
8

5
5
4
9
3
9
9
2
0
6
4
2

4
6
9
−8

9
2
8
−2

.1
3
1

5
5
4
9
4
9
4
2
0
6
4
2

4
7
5

1
.3

−8
7
8
2

1
.6

-
2
.0
9
6

1
.6

5
5
5
2
4
0
1
2
1
0
9
0

4
8
0

2
.3

−8
8
5
7

0
.8

-
2
.0
6
3

3
.2

A
v
e
r
a
g
e

1
.0
0
0
0

1
.0
0
0
0
1
.0
0
0

1
.0
0
0

1
.0
0
0

1
.0
0
0
0

1
.0
0
0
0
1
.0
2
6

2
.6

0
.9
8
7

1
.3

0
.9
7
2

2
.8

1
.0
0
0
5

1
.0
1
3
5
1
.0
9
1

9
.1

0
.9
8
0

2
.0

0
.9
5
8

4
.2

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:26 H. Liu, et al.

Table 4. Comparison of TNS and WNS after detailed routing under two different conditions: applying the net
reorder strategy, and combining both net reorder and net re-route strategies. The baseline is based on the
results of iRT from Table 3. The machine learning method [4] is utilized for timing prediction to guide the
two timing optimization strategies. “T-WL” denotes the total wire length, while “T-OF” signifies the total
overflow. “#DRV” means the design rule violation.

Circuits

iRT+reorder

T-WL T-OF #DRV △DRV(%) TNS (ns) △TNS(%) WNS (ns) ΔWNS(%)
ysyx_6 3959839 18936 468 13.0 −3668 1.3 -1.338 2.6

ysyx_7 4183207 21548 576 −0.5 −13710 −0.5 -1.621 1.9

ysyx_8 5549343 20642 493 5.1 −8758 1.9 -2.126 0.2

Average 1.0000 1.0000 1.059 5.9 0.991 0.9 0.984 1.6

Circuits

iRT+reorder+re-route

Tot-WL Tot-OF #DRV △DRV(%) TNS (ns) △TNS(%) WNS (ns) △WNS(%)
ysyx_6 3961037 19218 432 4.3 −3614 2.7 -1.327 3.4

ysyx_7 4185247 21632 596 2.9 −13523 0.9 -1.605 2.8

ysyx_8 5552444 21090 481 2.6 −8933 −0.1 -2.099 1.5

Average 1.0005 1.0135 1.033 3.3 0.988 1.2 0.974 2.6

length and total overflow is negligible. After applying the re-route optimization, on the training

circuits, the total wire length and total overflow increased by 0.16% and 1.27%, respectively, while

on the test circuits, they increased by 0.05% and 1.35%, respectively. Meanwhile, following the

application of both reorder and re-route optimizations, the value of WNS increased by 6.3% and 4.2%

on the training and test circuits, respectively. Compared to the WNS improvement, the increase

in total wire length and total overflow is deemed acceptable. When timing optimization is guided

by the KAN-UNet model proposed in this work, after applying the reorder strategy, the Design

Rule Violations (DRVs) increased by an average of 4.8% on the training set and 2.6% on the test set.

Further integration of the re-route strategy resulted in DRVs increasing to 6.8% on the training

circuits and 9.1% on the test circuits. Among the three tested circuits, the DRVs increased by 23.4%

(from 414 to 511), 1.4% (from 579 to 587), and 2.3% (from 469 to 480), respectively. Although the

average increase was 9.1%, the maximum DRV value of 587 and the maximum increment of 97 both

remains relatively small. This indicates that the violations are manageable and can be easily fixed

without significantly impacting the overall design flow. The slight rise in DRVs is a trade-off for

the timing improvements achieved, and the overall number of violations remains low, ensuring

minimal additional effort for correction.

To validate the effectiveness of the proposed KAN-UNet model, the wire delays predicted by

the machine learning model [4] were utilized to guide the reorder and re-route strategies for three

test circuits: ysyx_6, ysyx_7, and ysyx_8. The results are shown in Table 4. After applying the

reorder strategy, the TNS and WNS improved by 0.9% and 1.6%, respectively, which are lower than

the improvements of 1.3% and 2.8% achieved with KAN-UNet model. While the wirelength and

overflow remained unchanged, the DRVs increased by 5.9%. With the integration of the re-route

optimization strategy, the TNS and WNS further improved to 1.2% and 2.6%, respectively, still

lower than the 2.0% and 4.2% enhancements guided by the KAN-UNet model. The wirelength and

overflow increased by 1.35%, and the DRV rose by 3.3%. Although themachine learning-based timing

prediction model can also contribute to timing optimization, the proposed KAN-UNet outperforms

the machine learning-based model in timing optimization, providing more accurate wire delay

predictions. This leads to better reorder and re-route decisions, further achieving superior WNS

and TNS improvements. This highlights the effectiveness and stability of KAN-UNet model, further

emphasizing its advantages in achieving better timing optimization results.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiTPO: KAN-UNet Heterogeneous Network for Timing Prediction and Optimization at Global Routing XXX:27

To more clearly illustrate the improvements, Fig. 16 presents the enhancements in TNS and

WNS under three different scenarios: the baseline using iRT, the results after incorporating the net

reorder strategy, and the further improvements achieved by combining both the net reorder and re-

route strategies. The figure effectively highlights the incremental benefits of applying a sequential

combination of reorder and re-route strategies, confirming that these approaches significantly

improve the circuit’s overall timing performance. As shown in Fig. 17, to more vividly demonstrate

the improvements in timing optimization achieved by the machine learning model and the proposed

timing prediction model, we compared the enhancements in TNS and WNS resulting from the

reorder and re-route strategies guided by the wire delays predicted using the machine learning

model, and our proposed model. The results clearly illustrate the effectiveness of our proposed

timing prediction model in guiding timing optimization strategies.

7 Conclusion
Routing is a pivotal stage in attaining timing closure in integrated circuit design. During the timing

estimation process at the global routing stage, the lack of accurate detailed routing information

and the underestimation of the effects of physical congestion can lead to significant discrepancies

between the estimated timing and the actual post-detailed routing timing, ultimately resulting in

potentially misleading assessments of the circuit’s timing performance. In this work, we propose

a KAN-UNet heterogeneous network to align timing between the global and detailed routing

stage, taking into account global spatial information such as layout congestion. Additionally, we

introduce two timing optimization strategies: net reorder for potential congestion-affected nets

with significant delays and re-route critical nets with the selected timing-optimized topologies.

Experimental results confirm the accuracy of our timing prediction network and the effectiveness

of the optimization strategies.

References
[1] Hsien-Han Cheng, Iris Hui-Ru Jiang, and Oscar Ou. 2020. Fast and accurate wire timing estimation on tree and non-tree

net structures. In 2020 57th ACM/IEEE Design Automation Conference (DAC). 1–6. https://doi.org/10.1109/DAC18072.

2020.9218712

[2] Vidya A Chhabria, Jiang Hu, Andrew B Kahng, and Sachin S Sapatnekar. 2025. Toward an ML EDA commons:

establishing standards, accessibility, and reproducibility in ML-driven EDA research. In Proceedings of the 2025
International Symposium on Physical Design. 93–101.

[3] Vidya A Chhabria, Wenjing Jiang, Andrew B Kahng, and Sachin S Sapatnekar. 2022. From global route to detailed

route: ML for fast and accurate wire parasitics and timing prediction. In Proceedings of the 2022 ACM/IEEE Workshop
on Machine Learning for CAD. 7–14.

[4] Vidya A. Chhabria, Wenjing Jiang, Andrew B. Kahng, and Sachin S. Sapatnekar. 2023. A machine learning approach to

improving timing consistency between global route and detailed route. ACM Trans. Des. Autom. Electron. Syst. 29, 1,
Article 18 (dec 2023), 25 pages. https://doi.org/10.1145/3626959

[5] Chris Chu and Yiu-Chung Wong. 2007. FLUTE: Fast lookup table based rectilinear Steiner minimal tree algorithm for

VLSI design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27, 1 (2007), 70–83.
[6] Ke-Ren Dai, Wen-Hao Liu, and Yih-Lang Li. 2011. NCTU-GR: Efficient simulated evolution-based rerouting and

congestion-relaxed layer assignment on 3-D global routing. IEEE Transactions on very large scale integration (VLSI)
systems 20, 3 (2011), 459–472.

[7] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier neural networks. In Proceedings of the
fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings,

315–323.

[8] Zizheng Guo, Mingjie Liu, Jiaqi Gu, Shuhan Zhang, David Z. Pan, and Yibo Lin. 2022. A timing engine inspired

graph neural network model for pre-routing slack prediction. In Proceedings of the 59th ACM/IEEE Design Automation
Conference (San Francisco, California) (DAC ’22). Association for Computing Machinery, New York, NY, USA, 1207–1212.

https://doi.org/10.1145/3489517.3530597

[9] Guoqing He, Wenjie Ding, Yuyang Ye, Xu Cheng, Qianqian Song, and Peng Cao. 2024. An Optimization-Aware

Pre-Routing Timing Prediction Framework Based on Heterogeneous Graph Learning. In Proceedings of the 29th Asia

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

https://doi.org/10.1109/DAC18072.2020.9218712
https://doi.org/10.1109/DAC18072.2020.9218712
https://doi.org/10.1145/3626959
https://doi.org/10.1145/3489517.3530597

XXX:28 H. Liu, et al.

and South Pacific Design Automation Conference (Incheon, Republic of Korea) (ASPDAC ’24). IEEE Press, 177–182.

https://doi.org/10.1109/ASP-DAC58780.2024.10473937

[10] Xu He, Zhiyong Fu, YaoWang, Chang Liu, and Yang Guo. 2022. Accurate timing prediction at placement stage with look-

ahead RC network. In Proceedings of the 59th ACM/IEEE Design Automation Conference (San Francisco, California) (DAC
’22). Association for Computing Machinery, New York, NY, USA, 1213–1218. https://doi.org/10.1145/3489517.3530598

[11] Jiang Hu and Sachin S Sapatnekar. 2001. A survey on multi-net global routing for integrated circuits. Integration 31, 1

(2001), 1–49.

[12] Zhipeng Huang, Zengrong Huang, Simin Tao, Shijian Chen, Zhisheng Zeng, Liwei Ni, Chunan Zhuang, Weiguo Li,

Xueyan Zhao, He Liu, et al. 2024. AiEDA: an open-source AI-native EDA library. In 2024 2nd International Symposium
of Electronics Design Automation (ISEDA). IEEE, 794–795.

[13] Andrew B Kahng, Lutong Wang, and Bangqi Xu. 2021. TritonRoute-WXL: The open-source router with integrated

DRC engine. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 41, 4 (2021), 1076–1089.
[14] Xingquan Li, Zengrong Huang, Simin Tao, Zhipeng Huang, Chunan Zhuang, Hao Wang, Yifan Li, Yihang Qiu, Guojie

Luo, Huawei Li, et al. 2024. iEDA: An Open-source infrastructure of EDA. In 2024 29th Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 77–82.

[15] Rongjian Liang, Anthony Agnesina, Geraldo Pradipta, Vidya A Chhabria, and Haoxing Ren. 2023. Circuitops: An

ml infrastructure enabling generative ai for vlsi circuit optimization. In 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD). IEEE, 1–6.

[16] He Liu, Shengkun Wu, Simin Tao, Biwei Xie, Xingquan Li, and Ge Li. 2023. Accurate Timing Path Delay Learning

Using Feature Enhancer with Effective Capacitance. In 2023 International Symposium of Electronics Design Automation
(ISEDA). IEEE, 280–285.

[17] Jinwei Liu, Chak-Wa Pui, Fangzhou Wang, and Evangeline FY Young. 2020. CUGR: Detailed-routability-driven 3D

global routing with probabilistic resource model. In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE,
1–6.

[18] Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank, Alex Sergeev, and Jason Yosinski. 2018.

An intriguing failing of convolutional neural networks and the coordconv solution. Advances in neural information
processing systems 31 (2018).

[19] Siting Liu, Ziyi Wang, Fangzhou Liu, Yibo Lin, Bei Yu, and Martin Wong. 2023. Concurrent sign-off timing optimization

via deep steiner points refinement. In 2023 60th ACM/IEEE Design Automation Conference (DAC). 1–6. https://doi.org/

10.1109/DAC56929.2023.10247794

[20] Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić, Thomas Y Hou, and Max

Tegmark. 2024. Kan: Kolmogorov-arnold networks. arXiv preprint arXiv:2404.19756 (2024).
[21] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional networks for biomedical image seg-

mentation. In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference,
Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer, 234–241.

[22] Prashant Saxena, Rupesh S Shelar, and Sachin Sapatnekar. 2007. Routing congestion in VLSI circuits: estimation and
optimization. Springer Science & Business Media.

[23] Ziyi Wang, Siting Liu, Yuan Pu, Song Chen, Tsung-Yi Ho, and Bei Yu. 2023. Restructure-tolerant timing prediction

via multimodal fusion. In 2023 60th ACM/IEEE Design Automation Conference (DAC). 1–6. https://doi.org/10.1109/

DAC56929.2023.10247802

[24] Zhiyao Xie, Rongjian Liang, Xiaoqing Xu, Jiang Hu, Chen-Chia Chang, Jingyu Pan, and Yiran Chen. 2022. Preplacement

net length and timing estimation by customized graph neural network. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 41, 11 (2022), 4667–4680.

[25] Zhiyao Xie, Rongjian Liang, Xiaoqing Xu, Jiang Hu, Yixiao Duan, and Yiran Chen. 2021. Net2: A graph attention

network method customized for pre-placement net length estimation. In Proceedings of the 26th Asia and South Pacific
Design Automation Conference. 671–677.

[26] Yue Xu and Chris Chu. 2011. MGR: Multi-level global router. In 2011 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 250–255.

[27] Yue Xu, Yanheng Zhang, and Chris Chu. 2009. FastRoute 4.0: Global router with efficient via minimization. In 2009
Asia and South Pacific Design Automation Conference. IEEE, 576–581.

[28] Tai Yang, Guoqing He, and Peng Cao. 2022. Pre-routing path delay estimation based on Transformer and residual

framework. In Proceedings of the 27th Asia and South Pacific Design Automation Conference (Taipei, Taiwan) (ASPDAC
’22). IEEE Press, 184–189. https://doi.org/10.1109/ASP-DAC52403.2022.9712484

[29] Zhisheng Zeng, Jikang Liu, Zhipeng Huang, Ye Cai, Biwei Xie, Yungang Bao, and Xingquan Li. 2024. Net resource

allocation: a desirable initial routing step. In Proceedings of the 61st ACM/IEEE Design Automation Conference. 1–6.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

https://doi.org/10.1109/ASP-DAC58780.2024.10473937
https://doi.org/10.1145/3489517.3530598
https://doi.org/10.1109/DAC56929.2023.10247794
https://doi.org/10.1109/DAC56929.2023.10247794
https://doi.org/10.1109/DAC56929.2023.10247802
https://doi.org/10.1109/DAC56929.2023.10247802
https://doi.org/10.1109/ASP-DAC52403.2022.9712484

	Abstract
	1 Introduction
	2 PRELIMINARIES
	2.1 Global Routing
	2.2 A* Maze Routing Algorithm
	2.3 UNet Network

	3 Analysis and Framework
	3.1 Timing Analysis in Routing
	3.2 Our Timing Optimization Framework

	4 Timing Prediction Framework
	4.1 Feature Selection
	4.2 Neural Network Construction

	5 Timing Optimization
	5.1 Timing Aware Net Reorder
	5.2 Net Candidate Generation
	5.3 Net Evaluation and Selection

	6 Experimental Results
	6.1 Experimental Setting
	6.2 Accuracy Evaluation on Timing Prediction
	6.3 Timing Improvement on Timing Optimization

	7 Conclusion
	References

