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Placement is a critical and time-consuming step in very-large-scale integration (VLSI) design flow. As placement

methods continue to be researched, they introduce more parameters, making current methods for configuring

parameters heavily reliant on human experience for each design. This paper proposes a novel cross-design

parameter optimization method, iPO, to accelerate parameter tuning without human involvement in different

placement engines (like iEDA-iPL and DREAMPlace). Specifically, we introduce a heuristic strategy called

Constant Liar to accelerate parameter tuning, allowing us to optimize parameters concurrently on different

machines. Our research indicates that optimizing parameters for every design is time-consuming. To address

the inefficiency of parameter tuning, we propose a cross-design parameter transfer learning strategy. This

strategy measures the cosine similarity between designs in collaboration with a graph embedding algorithm

representing netlists and cells. Compared to DREAMPlace on ISPD2015 benchmarks, our method achieves

average improvements of 9.8% in half-perimeter wirelength (HPWL) and 12.0% in route congestion. When

compared to AutoDMP, iPO shows an average improvement of 11% in HPWL and 12.3% in congestion, along

with a 3.49× speed-up in the number of search iterations. Furthermore, we extended our experiments to the

iEDA-28nm benchmarks, showing average improvements of 4.7%, 2.7% and 2.8% in HPWL, worst negative

slack (WNS) and total negative slack (TNS), respectively, compared to iEDA-iPL. Finally, our ablation studies

on parallelization demonstrate that using 10 parallel processes results in approximately an 18× speed-up

compared to using a single process.

CCS Concepts: • Hardware → Placement; • Computing methodologies → Artificial intelligence;
Concurrent computing methodologies; Search methodologies.

Additional Key Words and Phrases: AI/ML, VLSI Placement, Design Space Exploration, Transfer Learning,

Parallelization, Representation Learning
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1 INTRODUCTION
Placement is a crucial step in the VLSI physical design flow, determining the positions of standard

cells and macros on the layout. The quality of the placement results can significantly impact

subsequent steps. Consequently, placement has been a focal point of research within the academic

community for many years. Standard portions of the digital EDA design flow are global placement

(GP), legalization (LG), and detailed placement (DP). In this paper, we focus mainly on GP.

A large number of algorithms have been proposed to address GP, which are mainly classified

as partition-based placement, simulated annealing-based placement, and analytical placement.

Analytical placement is now the state-of-the-art placement approach, including quadratic and

nonlinear analytical placement. Specifically, nonlinear analytical placement is the main placement

method, which is essentially a nonlinear optimization problem [29]. The fundamental principle

of the nonlinear analytical placement method is to express a cost function and the constraints as

analytical functions of cell locations, which can then be converted into a nonlinear programming

problem. In the process of placement, the input is a circuit’s netlist and a standard cell library. The

placement engine, such as iEDA-iPL [16] and DREAMPlace [17], determines the location of cells

and macros on the layout, ensuring that the overlaps between cells satisfy the density threshold.

iPL is an open-source placement tool [16], which uses the electric field density model and

Weighted-Average wirelength (WAWL) model for global placement. Following the framework of

analytical placement [4], many efforts have been made to accelerate global placement. DREAMPlace

[17] based on ePlace/RePlAce family [5, 19–21], draws an analogy between analytical placement

and deep learning (DL). By leveraging PyTorch as its API and combining both CPU and GPU

acceleration, DREAMPlace achieves substantial improvements in speed and scalability.

On one hand, these placement methods mentioned above are powerful enough to perform

placement tasks on VLSI designs. On the other hand, they bring more parameters that need to be

configured to process more complicated placement tasks. As a result, configuring the appropriate

parameters for each design typically involves experience and uncertain time [1, 2, 18]. Placement

often also requires substantial human intervention to generate effective placement solutions, which

makes parameter space exploration (PSE) necessary for free from manual configuration to some

degree. Fig. 1 shows the 3D Pareto frontier of worst negative slack (WNS) and total negative slack

(TNS), and half-perimeter wirelength (HPWL) on the design “gcd”, which demonstrates that PSE

can find much better parameters than manual configuration.

Themotivation behind this research stems from the inherent challenges and limitations associated

with traditional VLSI placement methodologies, which depend on human experience. Manual

configuration often relies on common and simple numerical values, such as setting the target density

to 0.9 on iEDA-iPL, which can overlook potentially optimal but uncommon values. As the complexity

of VLSI designs continues to grow, manual parameter tuning becomes increasingly impractical

and time-consuming [1, 30]. Manual configuration not only becomes more time-consuming and

ineffective but also makes it impossible to reach the Pareto frontier of objective metrics like HPWL,

WNS, and TNS. Furthermore, cross-design configuration is an impossible task with manual methods,

often requiring significant time to configure appropriate parameters for each design. Therefore,

there is a strong demand for a new, effective, and automated method to configure parameters across

designs.
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Fig. 1. The Pareto frontier of WNS (x-axis), TNS (y-axis), and HPWL (z-axis) on the design gcd from iEDA.
The baseline point, marked as a red pentagon, represents the result achieved through manual configuration
and is notably distant from the Pareto frontier. The point (-0.55, -20.02, 12.46) obtained through parameter
space exploration (PSE) demonstrates significantly better WNS, TNS, and HPWL values compared to the
baseline point. This illustrates the effectiveness of PSE in optimizing placement parameters to achieve superior
performance metrics.

There are several researches in design space exploration (DSE). AutoDMP [2] was proposed to

configure parameters automatically and concurrently by using multi-objective Bayesian optimizer

[25], which can generate high-quality solutions. Compared to baseline results, AutoDMP also

improves the macro placement quality. Unfortunately, AutoDMP never use transfer learning for

transferring parameters, which may lead to unstable quality of results. Meanwhile, AutoDMP

cannot configure parameters automatically on different machines and is primarily dedicated to

macro placement. Another method [1] based on Reinforcement Learning (RL) has been proposed to

optimize parameters, which is time-consuming with poor generalization across designs. In addition

to research work in placement, Li [14] et al. proposed the PAMBOF framework for Coarse-Grained

Reconfigurable Architecture (CGRA). This framework employs a deep neural network model as

a surrogate to calculate the expected q-hypervolume improvement (q-EHVI) using Monte Carlo

simulation. By efficiently exploring the design space, it achieves improved area and performance

within a shorter runtime. While these works address specific challenges in design space exploration

(DSE) within their respective fields, further research is needed to overcome time-consuming

processes and limited generalization, particularly in the context of placement optimization.
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To improve generalization across designs, we focus on transfer learning, which utilizes knowledge

learned from one task and applies it to similar tasks. In this paper, parameters are treated as

knowledge, and placement on different designs is viewed as different tasks. Thus, the key to

transferring parameters from one design to another lies in the similarity between the two designs.

To achieve this, we aim to study how to represent the features of the netlists and cells within

a design. Ren [26] has highlighted the effectiveness of Graph Neural Networks (GNN) for EDA

problems, demonstrating that GNNs can extract valuable information from circuits. GNNs primarily

focus on studying relationships within graph-structured data [27]. By considering problems as

networks of nodes and edges, classification [31] and representation learning [24] can be performed

based on the relationships between these nodes and edges. Moreover, graphs have been applied in

various research areas within EDA [6, 11, 12, 22].

Inspired by these studies, we treat cells and pins as nodes and wires as edges in a graph. Through

this method, we aim to measure the similarity between the two designs, facilitating effective

parameter transfer between them. In this paper, we propose iPO, which focuses on parameter

optimization for placement, to address the issues of time-consuming parameter tuning and poor

generalization across designs. The key contributions are summarized as follows:

(1) We introduce a heuristic strategy called Constant Liar to accelerate automated parameter

tuning. This strategy optimizes parameters on different machines concurrently, significantly

improving the efficiency of parameter tuning.

(2) We incorporate graph embedding technology to learn features from circuit netlists. In our

method, we adopt Graph2vec with Weisfeiler-Lehman subgraph to encode cells and their

neighboring cells.

(3) We propose a cluster-based parameter transfer learning strategy, which measures the simi-

larity between two designs using cosine similarity and transfers parameters across designs

through a modified K-Means clustering algorithm.

(4) In our experiments, compared to DREAMPlace on ISPD2015 benchmarks, ourmethod achieves

average improvements of 9.8% in HPWL and 12.0% in congestion. Additionally, compared to

AutoDMP, iPO shows an average improvement of 10% in HPWL and 12.3% in congestion,

along with a 3.3× speed-up in the number of search iterations (#s).

(5) Our framework is easy to extend, and can be easily applied to other placement engines (like

DREAMPlace and iEDA-iPL) with simple configuration.

The subsequent sections of this paper are organized as follows. Section 2 primarily introduces the

placement problem, and parameter optimization methods involved. Section 3 introduces our pro-

posed framework. In Section 4, we present and analyze the experimental results. Finally, Section 5

summarizes our work.

2 PRELIMINARIES
2.1 Analytical Placement
In this section, we primarily introduce the theory of analytical placement and some key parameters.

analytical placement, as described in [4], is currently the mainstream placement method and

involves parameters that need to be configured. The analytical placement problem is treated as a

nonlinear optimization problem, as shown in Eq. (1).

min

x,y

∑︁
𝑒∈𝐸

WL(𝑒; x, y) s.t. D(x, y) ≤ ˆD
(1)
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where WL(·; ·) denotes the wirelength function of a net instance 𝑒 ∈ 𝐸, D(·) denotes the density
constraints, and

ˆD is the target density specified by the user. If the density constraints are satisfied

for all bins, it indicates that the cells are sufficiently spread out with adequate spacing.

To solve this problem, Eq. (1) can be transformed into a Lagrangian unconstrained optimization

problem, where the solutions satisfy the constraint conditions and converge to an optimal solution,

as shown in Eq. (2).

min

x,y

∑︁
𝑒∈𝐸

WL(𝑒; x, y) + 𝜆D(x, y) (2)

where 𝜆 is the penalty factor [8]. In iEDA-iPL [16] and DREAMPlace [17], 𝜆 is called the density

penalty coefficient or density weight. Specifically, The non-differentiable HPWL function (WL(·; ·))
is estimated by the Weighted-average wirelength (WA) model [9].

WA𝑒 =

∑
𝑖∈𝑒 𝑥𝑖𝑒

𝑥𝑖
𝛾∑

𝑖∈𝑒 𝑒
𝑥𝑖
𝛾

−
∑

𝑖∈𝑒 𝑥𝑖𝑒
− 𝑥𝑖

𝛾∑
𝑖∈𝑒 𝑒

− 𝑥𝑖
𝛾

(3)

where 𝛾 is a parameter to control the smoothness and accuracy of the approximation to HPWL.

The smaller the value of 𝛾 , the more accurate but less smooth the HPWL approximation becomes.

In iPL and DREAMplace, the GP constraints correlate with the electrostatic equilibrium’s system

state. Specifically, they are members of ePlace/RePlAce family [5, 19], where density penalty is

modeled as potential energy, and density gradient is modeled as the electric field. According to

Poisson’s equation from the charge density distribution [19, 21], the electric potential and the field

can be calculated by Eq. (4) 
∇ · ∇𝜓 (𝑥,𝑦) = −𝜌 (𝑥,𝑦),
n̂ · ∇𝜓 (𝑥,𝑦) = 0, (𝑥,𝑦) ∈ 𝜕R∬
R 𝜌 (𝑥,𝑦) =

∬
R 𝜓 (𝑥,𝑦) = 0

(4)

where R denotes the placement region, 𝜕R denotes the boundary of the region, n̂ denotes the outer

normal vector of the region, 𝜌 denotes the charge density, and the𝜓 denotes the electric potential.

The numerical solution of the electric potential and field distribution can be obtained by solving

Poisson’s equation.

In analytical placement, target density
ˆD, density weight 𝜆, and the smoothness coefficient 𝛾

can be configured manually, except for these parameters, we can select HPWL smoothness model

for our placement. And there are other parameters can be configured, which will be introduced in

Section 3.2.

2.2 Neural Graph Embedding Models
In this section, we introduce the basic theory of graph embedding technology used in our paper.

In the field of Natural Language Processing (NLP), word2vec [23] uses a simple and efficient feed-

forward neural network architecture called "Skipgram" to learn distributed representations of

words. Given an sequence of words {𝑤1,𝑤2, · · · ,𝑤𝑇 }, the target word representation 𝑤𝑡 can be

learned by the Skipgram model, the model aims to maximize the log-likelihood of the context

words given the center word. This is represented as:

𝑇∑︁
𝑡=1

log 𝑃 (𝑤𝑡−𝑐 , . . . ,𝑤𝑡+𝑐 |𝑤𝑡 ) (5)
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where𝑤𝑡 is the center word, and𝑤𝑡−𝑐 , . . . ,𝑤𝑡+𝑐 are the context words within a window of size 2𝑐

around𝑤𝑡 . The probability 𝑃 (𝑤𝑡−𝑐 , . . . ,𝑤𝑡+𝑐 |𝑤𝑡 ) is defined as:

𝑃 (𝑤𝑡−𝑐 , . . . ,𝑤𝑡+𝑐 |𝑤𝑡 ) =
∏

−𝑐≤ 𝑗≤𝑐,𝑗≠0
𝑃 (𝑤𝑡+𝑗 |𝑤𝑡 )

(6)

Each 𝑃 (𝑤𝑡+𝑗 |𝑤𝑡 ) is computed using the softmax function:

𝑃 (𝑤𝑡+𝑗 |𝑤𝑡 ) =
exp( ®𝑤𝑡 · ®𝑤 ′𝑡+𝑗 )∑
𝑤∈𝑉 exp( ®𝑤𝑡 · ®𝑤)

(7)

where ®𝑤𝑡 is the embedding vector for the center word𝑤𝑡 , ®𝑤 ′𝑡+𝑗 is the embedding vector for a context

word𝑤𝑡+𝑗 , 𝑉 is the vocabulary of all words.

Based on the Skipgram model, Le and Mikolov proposed Doc2vec [13], an extension of word2vec

that transitions from learning embeddings of words to those of word sequences. This model

is capable of learning representations for arbitrary-length word sequences, such as sentences,

paragraphs, and even entire documents. Specifically, given a set of documents 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑁 }
and a sequence of words 𝑐 (𝑑𝑖 ) = {𝑤1,𝑤2, . . . ,𝑤𝑙𝑖 } sampled from document 𝑑𝑖 ∈ 𝐷 , Doc2vec uses
Skipgram to learns 𝛿-dimensional embeddings of the document 𝑑𝑖 ∈ 𝐷 and each word𝑤 𝑗 sampled

from 𝑐 (𝑑𝑖 ). This results in ˜𝑑𝑖 ∈ R𝛿 and𝑤 𝑗 ∈ R𝛿 respectively. The model operates by considering a

word𝑤 𝑗 ∈ 𝑐 (𝑑𝑖 ) as occurring in the context of document 𝑑𝑖 and aims to maximize the following

log likelihood:

𝑙𝑖∑︁
𝑗=1

log 𝑃 (𝑤 𝑗 |𝑑𝑖 ) (8)

where the probability 𝑃 (𝑤 𝑗 |𝑑𝑖 ) is defined as:

𝑃 (𝑤 𝑗 |𝑑𝑖 ) =
exp( ®𝑑𝑖 · ®𝑤 𝑗 )∑
𝑤∈𝑉 exp( ®𝑑𝑖 · ®𝑤)

(9)

where 𝑉 represents the vocabulary of all words across all documents in 𝐷 . Graph2vec [24] treated

graphs as an analogy to documents. In Graph2vec, graphs are composed of rooted subgraphs, which

are analogous to words from a special language. This approach extends document embedding

models to learn graph embeddings. In our method, we use this method to learn graph embedding

of netlists and cells.

2.3 Expected Improvement
Before we introduce Expected Improvement (EI), we first introduce Ordinary Kriging (OK) for

better understanding of EI. Ordinary Kriging is a popular Kriging metamodel, which provides a

mean prediction model and allows for the quantification of prediction accuracy at each point [7],

which can be seen as a parameter point. The mean and variance at a point x are given by Eq. (10)

and Eq. (11) respectively:

𝑚OK (x) =
[
c(x) +

(
1 − c(x)𝑇 Σ−11𝑛

1𝑇𝑛Σ−11𝑛

)
1𝑛

]𝑇
Σ−1Y (10)

𝑠2
OK
(x) = 𝜎2 − c(x)𝑇 Σ−1c(x) + (1 − 1𝑇𝑛Σ−1c(x))2

1𝑇𝑛Σ−11𝑛
(11)

where c(x) :=
[
𝑐
(
𝑌 (x), 𝑌 (x(1) )

)
, . . . , 𝑐

(
𝑌 (x), 𝑌 (x(𝑛) )

) ]
represents the covariance vector between

location x and the sample points, Σ is the covariance matrix of the sample points, Y is the vector

of observed values at the sample points, 1 is a vector of all ones, and 𝜎2 is the variance vector of

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.



iPO: Constant Liar Parameter Optimization for Placement with Representation and Transfer Learning XXX:7

the sample points. We then introduce the theory of Expected Improvement (EI), which is used

to optimize parameters. EI [28] is an alternative method used to maximize the expected value of

improvement in Eq. (12):

EI(x) = E[(min(𝑌 (X) − 𝑌 (x))+ |𝑌 (X) = Y]
= E[max{0,min(𝑌 (X)) − 𝑌 (x)}|𝑌 (X) = Y] (12)

where X represents the history set of points, specifically comprising all configurations generated

during previous evaluations. Thismethod also considers themagnitude of improvement. EImeasures

the expected amount of improvement when sampling at point x. In practice, if 𝑌 (x) is higher than
min(Y), the improvement is 0; otherwise, the improvement is (min(Y) − 𝑌 (x)). Based on OK,

knowing the conditional distribution of 𝑌 (x), EI can be computed in Eq. (13):

EI(x) = (min(Y) −𝑚OK (x))Φ
(
min(Y) −𝑚OK (x)

𝑠OK (x)

)
+ 𝑠OK (x)𝜙

(
min(Y) −𝑚OK (x)

𝑠OK (x)

) (13)

where Φ denotes the cumulative distribution function (CDF) of the standard normal distribution

𝑁 (0, 1), 𝜙 represents its probability density function (PDF).

2.4 Tree-structured Parzen Estimator (TPE)
The aforementioned method can be practically used to interpolate the parameter sample point of

the placement engine in the placement process. Here, we will focus on the Tree-structured Parzen

Estimator (TPE) [3]. This algorithm is also a parameter configuration method based on expected

improvement. However, unlike the previously introduced OK-based algorithm, we need to set a

threshold 𝑦∗ internally to divide two layout density functions 𝑙 (𝑥) and 𝑔(𝑥), thereby defining a

conditional probability 𝑝 (𝑥 |𝑦) as follows:

𝑝 (𝑥 |𝑦) =
{
𝑙 (𝑥), 𝑦 < 𝑦∗

𝑔(𝑥), 𝑦 ≥ 𝑦∗
(14)

where 𝑙 (𝑥) is the function for all observed samples {𝑥 (𝑖 ) } whose corresponding metric values

𝑓 (𝑥 (𝑖 ) ) are less than 𝑦∗, and the density function for the remaining samples is 𝑔(𝑥). Assuming the

probability that a parameter 𝑥 corresponds to a metric value 𝑦 less than 𝑦∗ is denoted as 𝑝 (𝑦 < 𝑦∗)
= 𝛾 ′. The expected improvement using the TPE algorithm can be expressed as:

EI𝑦∗ (x) = E [𝑦∗ − 𝑌 (x) |𝑌 (X) = Y]

=

∫ 𝑦∗

−∞
(𝑦∗ − 𝑦)𝑝 (𝑦 |x)𝑑𝑦

=

∫ 𝑦∗

−∞
(𝑦∗ − 𝑦) 𝑝 (x|𝑦)𝑝 (𝑦)

𝑝 (x) 𝑑𝑦

(15)
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then we can further refine and differentiate EI in Eq. (16) as follows:

EI𝑦∗ (x) =
𝑦∗

∫ 𝑦∗

−∞ 𝑝 (x|𝑦)𝑝 (𝑦)𝑑𝑦 −
∫ 𝑦∗

−∞ 𝑦𝑝 (x|𝑦)𝑝 (𝑦)𝑑𝑦
𝑝 (x)

=
𝑦∗𝑙 (𝑥)𝛾 ′ − 𝑙 (𝑥)

∫ 𝑦∗

−∞ 𝑦𝑝 (𝑦)𝑑𝑦∫ 𝑦∗

−∞ 𝑝 (x|𝑦)𝑝 (𝑦)𝑑𝑦 +
∫ +∞
𝑦∗

𝑝 (x|𝑦)𝑝 (𝑦)𝑑𝑦

=
𝑦∗𝑙 (x)𝛾 ′ − 𝑙 (x)

∫ 𝑦∗

−∞ 𝑦𝑝 (𝑦)𝑑𝑦
𝛾 ′𝑙 (x) + (1 − 𝛾 ′)𝑔(x) ∝

(
𝛾 ′ + 𝑔(x)

𝑙 (x) (1 − 𝛾
′)
)−1

(16)

so that to maximize EI we use high probability under 𝑙 (x), and low probability under𝑔(x), in Eq. (16),
we will get the point x with the greatest EI value.

Fig. 2. The iPO framework includes four parts: Representation Learning, Parameter Space, Strategy, and
Transfer Learning. In Representation Learning, the input is design netlists files, and the output is design
embeddings that encode netlist graphs and design properties. The Parameter Space part takes parameter
configuration files as input and defines a parameter space with a prior distribution to maximize Expected
Improvement (EI), producing the parameter space as output. The Strategy part uses the transfer learning
path and parameter space as input, generating 𝑞 pairs of (parameters, metrics) for each design as output.
In Transfer Learning, the input consists of design embeddings and a similarity matrix, and the output is a
transfer learning path that clusters and guides parameter sampling across designs. Overall, the framework’s
input is design netlists and parameter configuration files, and the output is 𝑞 (parameter, metric) pairs.

3 iPO FRAMEWORK
In this section, we introduce our proposed framework iPO. The overall flow of iPO is depicted in

Fig.2, which is easy to be extended to different placement engines, such as iEDA-iPL, DREAMPlace

and run on different machines concurrently. The framework also takes transfer learning technology

into account for addressing low-effective cross-design parameter tuning. The entire framework of

iPO consists of four main components: Representation Learning, Parameter Space, Strategy, and

Transfer Learning.
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• Representation Learning: This component focuses on creating a comprehensive feature

vector. We concatenate the feature vector of cell type and size to a graph vector obtained

through the Graph2vec algorithm. This combined vector effectively represents the netlist

structure, capturing essential information about the cells and their connections.

• Parameter Space: we define the parameter space with prior distribution to maximize the Ex-

pected Improvement (EI). This space includes various parameters necessary for the placement

tasks, establishing the foundation for efficient optimization.

• Strategy: This component deals with parameter tuning and parallelization. It involves

generating parameter samples for each design and executing placement tasks concurrently

on different processes or machines. This parallel approach accelerates the parameter tuning

process, enhancing efficiency and effectiveness.

• Transfer Learning: The component focuses on transferring parameters to other designs. We

use a cluster-based parameter transfer learning strategy that measures the similarity between

designs using cosine similarity. Parameters are then transferred across designs through a

modified K-Means clustering algorithm, ensuring the effective reuse of optimized parameters

for similar designs.

3.1 Representation Learning
The objective of placement is to arrange all the macro cells and standard cells on a chip. These cells

are logically connected by the netlist-defined connections. From a graph perspective, the cells in

the netlist and their logical connections form nodes and edges.

3.1.1 Graph Based on Netlist. As illustrated in the top left of Fig. 3, the diagram represents a

Johnson Ring Counter circuit, which comprises four Flip-Flops and two logic gates. We treat the

Flip-Flops and logic gates (referred to as cells) as nodes in a graph, and the connections between

nodes as edges. In Fig. 3, we treat the Flip-Flops and logic gates as nodes and construct a graph,

which encapsulates the structure information of the circuit and contains the information of the

number of nets and cells. The overall process of graph construction is depicted in Fig. 3.

Fig. 3. The graph connections are based on netlist. Firstly, we convert Flip-Flops and logic gates into nodes
(represented in blue). Next, we remove unrelated connections. After this cutting process, we adjust the relative
positions of the nodes.

3.1.2 Netlist Representation Learning. we considers the relationships between nodes and edges

from both cell and net perspectives. Graphs are treated analogously to documents, composed
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Algorithm 1 Netlist Representation Learning Algorithm

Input: different designs netlist files N = {𝑁1, 𝑁2, . . . , 𝑁𝑛}; number of dimensions (default 128) 𝛿 ; design

feature size 𝜔

Output: embedding matrix for different designs V = {𝑣1, 𝑣2, . . . , 𝑣𝑛}
1: function CircuitGraphLearning(N, 𝛿, 𝜔)

2: G𝑐 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐺𝑟𝑎𝑝ℎ𝐵𝑦𝐶𝑒𝑙𝑙𝑠 (N) ⊲ G𝑐 =

{
𝐺
(1)
𝑐 ,𝐺

(2)
𝑐 , . . . ,𝐺

(𝑛)
𝑐

}
3: 𝐷 ← maxDegree(G𝑐 ) ⊲ the maximum number of neighbouring

4: V𝑛×𝛿 = Graph2vec(G𝑐 , 𝛿, 𝐷) ⊲ get a 𝑛 × 𝛿 graph embedding of different circuit designs

5: U𝑛×1 = [𝜙1, 𝜙2, · · · , 𝜙𝑛] ⊲ initialize a 𝑛 × 1 vector
6: 𝑀 ← 𝑔𝑒𝑡𝐶𝑒𝑙𝑙𝑇𝑦𝑝𝑒𝑁𝑢𝑚(N) ⊲ get the number of all cell types from all circuit designs N
7: for 𝑖 ← 1, 𝑛 do
8: 𝑤 = (0.01, 0.02, . . . , 0.0𝑀 ) ⊲ 𝑤𝑚 (𝑚 ∈ [0, 𝑀]) denotes the sum of width of the type of𝑚-th cell

9: 𝑤∗ = (0.01, 0.02, . . . , 0.0𝑀 ) ⊲ 𝑤∗𝑚 (𝑚 ∈ [0, 𝑀]) denotes the maximum width of the𝑚-th cell type

10: 𝑠 = (01, 02, . . . , 0𝑀 ) ⊲ 𝑤∗𝑚 (𝑚 ∈ [0, 𝑀]) denotes the number of the type of𝑚-th cell

11: 𝐶𝑖 ← 𝑔𝑒𝑡𝐴𝑙𝑙𝐶𝑒𝑙𝑙𝑠 (𝑁𝑖 ) ⊲ get cells set from design 𝑁𝑖

12: for each 𝑐 𝑗 ∈ 𝐶𝑖 do
13: 𝑤 𝑗+ = 𝑐 𝑗 .𝑤𝑖𝑑𝑡ℎ ⊲ plus the width of cell 𝑐 𝑗 to𝑤 𝑗

14: 𝑠 𝑗+ = 1 ⊲ plus 1 to 𝑠 𝑗

15: if 𝑤 𝑗
∗ < 𝑤

𝑗 then
16: 𝑤

𝑗
∗ = 𝑤

𝑗 ⊲ update the maximum width of the𝑚-th cell type

17: end if
18: end for
19: U𝑖 =

𝑤
𝑠 ·𝑤∗ ⊲ vector U𝑖 contains information of cell type and size

20: end for
21: U′𝑛×𝜔 = 𝑃𝐶𝐴(U𝑛×𝑀 , 𝜔) ⊲ reduce the dimension of U to 𝑛 × 𝜔 using principal components analysis

22: V𝑛×(𝛿+𝜔 ) = V𝑛×𝛿 ⊕ U′𝑛×𝜔 ⊲ concatenate graph embedding matrix V concatenate to U′

23: return V
24: end function

of rooted subgraphs that are analogous to words from a special language. This method extends

document embedding models to learn graph embeddings of a circuit.

We introduce the Graph2vec algorithm (shown in Algorithm 1) to represent different netlist

structures as embedding vectors. As discussed above in Section 3.1.1, we can determine connections

between two cells and know the number of nets and cells from the graph. Therefore, the embedding

vector encapsulates the information of the netlist structure, including the number of cells and nets.

To contains more information about the cells, we consider cell size and type.

A graph representation learning algorithm is used to represent each graph as a embedding

vector, which contains information on sizes and types of all cells. Specifically, as shown in line 9

of 𝐺𝑟𝑎𝑝ℎ2𝑣𝑒𝑐 of Algorithm 2, the 𝐺𝑒𝑡𝑊𝐿𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ function follows the well-known Weisfeiler-

Lehman relabeling process to extract subgraphs.

3.2 Parameter Space
3.2.1 DREAMPlace Parameter Analysis. We use 13 parameters to form the effective parameter

space. These parameters are summarized in Table 1.

3.2.1.1 Original Parameters. The last nine parameters in Table 1 represent the original parame-

ters from DREAMPlace. In machine learning tasks, the parameters related to gradient descent are

considered as hyperparameters, which significantly affects the results. Taking inspiration from this
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Algorithm 2 Netlist Graph2vec Algorithm

Input: Netlist graph set of different designs G =

{
𝐺 (1) ,𝐺 (2) , . . . ,𝐺 (𝑛)

}
; number of dimensions 𝛿 , maximum

degree of rooted subgraphs 𝐷 , number of epochs 𝑇

Output: embedding matrix for different designs V = {v1, v2, . . . , v𝑛}
1: function Graph2vec(G, 𝛿 , 𝐷 , 𝑇 )
2: Initialize 𝑛 × 𝛿 embedding matrix V
3: for 𝑖 ← 1,𝑇 do
4: B = 𝑆ℎ𝑢𝑓 𝑓 𝑙𝑒 (G)
5: for 𝐺 (𝑖 ) ∈ B do
6: N𝑖 ← 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒 (𝐺 (𝑖 ) ) ⊲ set of all nodes in 𝐺 (𝑖 )

7: for 𝑐 ∈ N𝑖 do
8: for 𝑑 ← 0, 𝐷 do ⊲ use Weisfeiler-Lehman kernel to encode subgraph rooted at 𝑐

9: 𝑠𝑔
(𝑑 )
𝑐 = 𝐺𝑒𝑡𝑊𝐿𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑐,𝐺 (𝑖 ) , 𝑑) ⊲ 𝑠𝑔 (𝑑 )𝑐 encode a 𝑑-degree subgraph rooted at 𝑐 in

𝐺 (𝑖 )

10: 𝐽 (V) = − log 𝑃 (𝑠𝑔 (𝑑 )𝑐 |𝐺 (𝑖 ) ) ⊲ Doc2vec algorithm, 𝑠𝑔
(𝑑 )
𝑐 seen as word, 𝐺 (𝑖 ) seen as

document, compute log-likelihood defined in Eq. (8)

11: V = V − 𝛼 𝜕𝐽
𝜕V ⊲ update V using backpropagation

12: end for
13: end for
14: end for
15: end for
16: end function
Input: Node which acts as the root of the subgraph 𝑐; Graph G, Degree of neighbours 𝑑

Output: Rooted subgraph of degree 𝑑 around node 𝑐 𝑠𝑔
(𝑑 )
𝑐

1: function GetWLSubgraph(𝑐,𝐺,𝑑)

2: 𝑠𝑔
(𝑑 )
𝑐 = {}

3: if d=0 then
4: 𝑠𝑔

(𝑑 )
𝑐 ← 𝐿𝑎𝑏𝑒𝑙 (𝑐) ⊲ get label of node 𝑐

5: else
6: C𝑐 ← {𝑐′ | (𝑐, 𝑐′) ∈ 𝐸} ⊲ neighbour nodes set, E denotes edges set of G

7: M(𝑑 )𝑐 ← {𝐺𝑒𝑡𝑊𝐿𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑐′,𝐺, 𝑑 − 1) |𝑐′ ∈ C𝑐 }
8: 𝑠𝑔

(𝑑 )
𝑐 ← 𝑠𝑔

(𝑑 )
𝑐 ∪𝐺𝑒𝑡𝑊𝐿𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑐,𝐺,𝑑 − 1) ⊕ 𝑠𝑜𝑟𝑡 (M(𝑑 )𝑐 )

9: end if
10: return 𝑠𝑔 (𝑑 )𝑐

11: end function

technology in machine learning, we take the learning rate, gradient descent (GD) method, and the

remaining seven parameters as hyperparameters.

3.2.1.2 Initial Cell Positions Parameters. In DREAMPlace, analytical placement is analogous to

training a neural network, which is inherently a nonlinear optimization problem. Just as effective

weight parameter initialization in deep learning accelerates model convergence, initializing cell

positions in analytical placement plays a similar role. By leveraging this analogy, we aim to initialize

cell positions closer to their converged positions to enhance the convergence speed of placement

optimization. This approach is expected to reduce placement convergence time significantly.

DREAMPlace initializes all cells at the center of the placement. This methods brings inflexible

initialization to cell positions and hinders better quality from being generated. We define four

parameters related to initial cell positions, they are 𝑥𝑙𝑜𝑐 , 𝑦𝑙𝑜𝑐 , 𝑥𝑠𝑐𝑎𝑙𝑒 and 𝑦𝑠𝑐𝑎𝑙𝑒 . 𝑥𝑙𝑜𝑐 and 𝑦𝑙𝑜𝑐 are the
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Table 1. Parameter List of DREAMPlace.

Parameter Description Prior Distribution
𝑥𝑙𝑜𝑐 x location 𝑈 (0.001, 1.0)
𝑦𝑙𝑜𝑐 y location 𝑈 (0.001, 1.0)
𝑥𝑠𝑐𝑎𝑙𝑒 x location scale 𝑈 (0.001, 1.0)
𝑦𝑠𝑐𝑎𝑙𝑒 y location scale 𝑈 (0.001, 1.0)
𝑏𝑖𝑛𝑠𝑛𝑢𝑚 number of bins {64, 128, 256, 512, 1024, 2048}

𝐻𝑃𝑊𝐿𝑚𝑜𝑑𝑒𝑙 HPWL smooth model {weighted_average, logsumexp}

𝐺𝐷𝑚𝑒𝑡ℎ𝑜𝑑
Gradient descent

method on GP

{nesterov, adam, sgd,

sgd_momentum, sgd_nesterov}

𝛼 GP learning rate 𝑈 (0.001, 0.05)
𝜆 density weight 𝑈 (𝑒−6, 2𝑒−4)

𝑑𝑡𝑎𝑟𝑔𝑒𝑡 target density 𝑈 (0.3, 1.0)
𝛾 gamma 𝑈 (0.01, 0.02)

𝐺𝑃𝑟𝑎𝑡𝑖𝑜 GP noise ratio 𝑈 (0.01, 0.05)
𝜏 stop overflow 𝑈 (0.05, 0.15)

𝑈 denotes uniform distribution.

(a) (b) (c) (d)

Fig. 4. Different placement results with original initialization and our initialization. (a) and (c) show the
original initial cells positions and our initial cells positions respectively, blue dots is cells. (b) shows the original
final placement where iteration is 610. (d) shows the final placement of cells position parameters where
iteration is 520.

x and y positions center respectively, 𝑥𝑠𝑐𝑎𝑙𝑒 and 𝑦𝑠𝑐𝑎𝑙𝑒 are the x and y positions scale, which denote

the standard deviation in normal distribution and affect the results of initial cell positions. x and y

coordinates of initial cell positions are generated by Eq. (17) and Eq. (18) respectively:

𝑓 (𝑥) = 1

√
2𝜋𝑥𝑠𝑐𝑎𝑙𝑒

exp

(
− (𝑥 − 𝑥𝑙𝑜𝑐 )

2

2𝑥2
𝑠𝑐𝑎𝑙𝑒

)
(17)

𝑓 (𝑦) = 1

√
2𝜋𝑦𝑠𝑐𝑎𝑙𝑒

exp

(
− (𝑦 − 𝑦𝑙𝑜𝑐 )

2

2𝑦2
𝑠𝑐𝑎𝑙𝑒

)
(18)

Therefore, setting different values to these parameters can change the initial cells positions on

the layout. Fig. 4 shows the effect of different initial locations on the final placement.
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Table 2. Parameter List of iEDA-Placement in the stage of global placement.

Parameter Description Prior Distribution
init_wirelength_coef initial wirelength coefficient 𝑈 (0.1, 0.5)

min_wirelength_force_bar minimum wirelength force bar 𝑈 (−500.0,−50.0)
target_density target density 𝑈 (0.8, 1.0)

bin_cnt
the number of bin on vertical

and horizontal direction

{16, 32, 64, 128,
256,512,1024}

max_backtrack
the maximum number

of backtracks

𝑈 (5, 50)

init_density_penalty
initial density

penalty coefficient

𝑈 (0.0, 0.001)

target_overflow target overflow 𝑈 (0.0, 0.2)

initial_prev_coordi_update_coef
coefficient for initial

perturbation of coordinates

𝑈 (50.0, 1000.0)

min_precondition minimum precondition 𝑈 (1.0, 10.0)
min_phi_coef minimum phi coefficient 𝑈 (0.75, 1.25)
max_phi_coef maximum phi coefficient 𝑈 (0.75, 1.25)

𝑈 denotes uniform distribution.

3.2.2 iEDA Placement Parameters Analysis. In the stage of global placement of iEDA flow [15],

there are 11 parameters that need to be configured. We use AiEDA [10] (AI library for EDA) to run

netlist-GDS flow. To optimize these parameters, we perform parameter tuning. The parameters

are summarized in Table 2, where bin_cnt_x and bin_cnt_y are set to be equal and represented

by a single parameter, bin_cnt, which can take values within a specified range. We utilize a prior

distribution to define the other parameters, subsequently creating a parameter space for the iEDA

placement. To evaluate parameter sensitivity, we employ Random Forest (RF) - a well-established

method for assessing individual parameter impacts on performance metrics. Using 2000 historical

samples from the gcd design, we analyze each parameter’s influence on HPWL, TNS, and WNS. The

importance analysis (Fig. 5) reveals that max_phi_coef exhibits the strongest correlation with all

three target metrics. These insights enable more strategic parameter selection and tuning refinement

to enhance placement quality.

3.3 Strategy
3.3.1 Sequential Model-based Optimization. In the stage of placement, based on EI, the Tree-

structured Parzen estimator (TPE) is designed to optimize objective function by Algorithm 3. In

our method, x is treated as parameters vector which need to be configured, 𝑦 (x) is seen as a metric

for measuring wirelength, timing and congestion. We can search a group of parameters by using

Algorithm 3, then we configure parameters for placement. With these parameters, 𝑦 is evaluated

by placement engine.

3.3.2 Constant Liar Strategy. In Sequential Model-based Optimization (SMBO), we sample parame-

ter point concurrently to accelerate optimization intuitively. But this may result in the next group

of parameters being generated in the same Expected Improvement state (see Fig. 7 (a)), which will

cause a waste of computing resources without performance improvement. To address this issue,

we use q-points expected improvement (q-EI) [7] to accelerate parameter tuning. The q-EI can

yield several points at each iteration, which suits the parallelization well. The q-EI maximization of
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Fig. 5. Parameter sensitivity to objective metrics (HPWL, WNS, and TNS) in the design gcd.

Fig. 6. The overall flow of parameter tuning. When 𝑞 = 1, the sample 𝑥𝑡𝑛𝑒𝑤 is directly taken by the paral-
lelization module where only one placement task is running, indicating that the Heuristic Strategy module
is disabled. The update module updates the real metric value for the sample with the "lie" constant 𝐿. The
parallelization module performs the placement tasks concurrently; placement task 1 and task 2 run on
different processes, while task 𝑞 is executed on another machine.

multiple parameter groups is shown as

(x𝑛+1, x𝑛+2, . . . , x𝑛+𝑞) = 𝑎𝑟𝑔𝑚𝑎𝑥x∈𝐷𝑞 [𝐸𝐼 (x)] (19)

where 𝑞 is the number of parameter sets generated at each iteration, and 𝐷 is parameter space. x𝑛+𝑚

denotes the𝑚th group of parameters generated by parameter space in 𝑛th iteration. X denotes

the set of parameters that have been generated. Given the computational complexity of a direct

q-EI maximization, we use Constant Liar strategy (as shown in Algorithm 4) to approximate q-EI

maximization [7]. In Constant Liar strategy, we use a “lie” constant to generate multiple groups

of parameters, which reduces the high computational cost. As shown in Fig. 6, the parallelization
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Algorithm 3 Placement Tuning Algorithm for Placement

Input: Parameter set X, value set Y, threshold 𝑦∗, the number of epoch 𝑇 ;

Output: new parameter set X, new value set Y
1: function findMaxEI(X, Y, 𝑦∗, 𝑇 , 𝑞)
2: for 𝑖 ← 1,𝑇 do
3: x̂1×𝑚 = 𝑎𝑟𝑔𝑚𝑎𝑥x𝐸𝐼𝑦∗ (x) ⊲𝑚 is the number of configuration parameter, argmax denotes Eq. (16)

4: 𝑦 ← 𝑃𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐸𝑛𝑔𝑖𝑛𝑒 (x) ⊲ Get 𝑦 from placement engines like iEDA-iPL, DREAMPlace

5: Adjust 𝑝 (𝑦 |x) by 𝑦∗
6: X𝑖×𝑚 = X(𝑛+𝑖−1)×𝑚 ∪ {x}
7: Y𝑖×1 = Y(𝑛+𝑖−1)×1 ∪ {𝑦}
8: end for
9: end function

module runs placement tasks on different processes or machines concurrently, applying different

parameters to the same circuit design.

In Algorithm 4, X denotes the set of parameter generated, Y denotes the HPWL value set

corresponding to current X, 𝑞 denotes the number of parameter sets generated at each iteration.

Fig. 7 (a) shows the point distribution, where points are concentrated in AutoDMP, and many

points have the same EI state. This reduces the exploration ability of the parameter space. Fig. 7 (b)

shows the point distribution in iPO, where points are scattered more effectively, enabling better

exploration of the parameter space. To further analyze the distributions, we compare the standard

deviation as a percentage of the mean for both approaches. This metric is displayed in the top-right

corner of each subfigure (denoted as lr for learning rate and dw for density weight) for both the first

and second iterations. In AutoDMP, the percentages are 168.96% in the first iteration and 127.45%

in the second iteration. These values indicate that, in AutoDMP, a few points are sampled far away

from the rest, while the majority of points are clustered in adjacent areas.

Algorithm 4 𝑞-𝐸𝐼 Constant Liar Algorithm for Placement

Input: The parameter set X, the metric value set Y, the number of parameters 𝑞, the “lie” constant

(can be set to mean(Y), max(Y), or min(Y)) 𝐿, threshold 𝑦∗ ;
Output: The updated parameter set X, the updated metric value set Y
1: procedure greedyqCL(X, Y, 𝐿, 𝑦∗, 𝑞)
2: for 𝑖 ← 1, 𝑞 do
3: x(𝑛+𝑖 ) |

1×𝑚 = 𝑎𝑟𝑔𝑚𝑎𝑥x𝐸𝐼𝑦∗ (x) ⊲𝑚 is the number of configuration parameter, argmax

denotes Eq. (16)

4: X(𝑛+𝑖 )×𝑚 = X(𝑛+𝑖−1)×𝑚 ∪ {x(𝑛+𝑖 ) }
5: Y(𝑛+𝑖 )×1 = Y(𝑛+𝑖−1)×1 ∪ {𝐿}
6: end for
7: for 𝑖 ← 1, 𝑞 do
8: 𝑦 (𝑛+1) ← 𝑃𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐸𝑛𝑔𝑖𝑛𝑒 (x(𝑛+1) )
9: Y(𝑛+1) ← 𝑦 (𝑛+1)

10: end for
11: return X,Y
12: end procedure

3.3.2.1 Samples. In the overall framework (shown in Fig. 6), the Samples module is primarily

responsible for maintaining all sample tuples (X,Y). Initially, the Heuristic Strategy module transfers
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(a) (b)

Fig. 7. Two parameters, density weight and GP learning rate, follow a uniform distribution. Red points
represent the first group of parameters generated by the parameter space, while green points represent the
second group.

the sample tuple (𝑥𝑛𝑒𝑤 ,𝑦𝑛𝑒𝑤= 𝐿) to the Samples module. Here,𝑦𝑛𝑒𝑤 will be replaced by the real𝑦𝑛𝑒𝑤
after placement. As the sample size increases, we aim for the parameter distribution to progressively

align more closely with the real distribution.

3.3.3 Placement Engine Adapting. During parameter optimization, we observed that for certain

parameter groups, convergence in DREAMPlace terminates prematurely on the circuitmgc_fft_b (as
shown in Fig. 8). This premature termination is caused by a fixed overflow threshold in DREAMPlace,

which is designed to handle abnormal placement cases. However, in our experiments, this threshold

mistakenly interrupts the placement process. To address this issue, we propose a self-adaptive

overflow threshold to achieve smoother termination. This adaptive method allows for larger

overflow values during the early stages of placement, and gradually tightens the threshold in the

later stages to refine the placement results. The self-adaptive convergence adjustment is governed

by the following equation:

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝜇 (1 − 𝜃 ) + 𝜏𝜃, 𝜃 = 𝑆 (𝜈𝑡 − 𝑐) (20)

where 𝑐 = 6, 𝜇 = 0.5, 𝜈 = 0.01, 𝑡 is current iteration and 𝜏 is last overflow. 𝑆 (𝑥) = (1+𝑒−𝑥 )−1 denotes
the sigmoid function. Convergence finishes when current overflow rate of increase is greater than

or equal to 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 by Eq. (20).

iPL [16] aims to determine cell positions that comply with design rules and contribute to routing,

timing convergence, and power consumption. The goal is to minimize wirelength, timing, and

congestion. iPL can be executed using Python and TCL scripts. To integrate seamlessly with iPL, we

have developed a scalable interface for our framework. This ensures that iPO is embedded within

iPL without introducing any extraneous modules.

3.4 Transfer Learning
3.4.1 Transfer Learning Path. In the field of machine learning, transfer learning involves transfer-

ring labeled data, knowledge structures, or model parameters from one completed task to another

similar but distinct task [32]. In placement, one might directly apply previously optimized parame-

ters to a different circuit, but this approach does not guarantee effectiveness. To address this, our

framework incorporates transfer learning to facilitate efficient and adaptive parameter transfer.

In our framework, we firstly use cosine similarity to measure similarity two designs. By cosine

similarity, a transfer learning path 𝑆 is generated as presented in Algorithm 5. 𝑆 is a sequence of
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(a) (b)

Fig. 8. Different curves are observed with and without self-adaptive convergence adjustment. In (a), HPWL
decreases gradually, but convergence finishes too early on DREAMPlace for some groups of parameters. In
contrast, (b) shows that convergence finishes normally in iPO when using Eq. (20).

Fig. 9. The transfer learning flow. In the first step, all designs are interconnected, necessitating an analysis
of the longest path for our transfer task. In the second step, we identify the longest path from all possible
transfer paths. In the third step, designs are grouped into clusters based on the identified paths.

points, where each point represents an embedding corresponding to a specific design. In Fig. 9, the

bold red arrow denotes the sequence of 𝑆 , digits in red denotes cosine similarity.

3.4.2 Cluster Analysis. In Algorithm 5, the cosine similarity mentioned in lines 3 and 8 is specifically

expressed by the cosine similarity formula as shown in Eq. (21):

sim(v1, v2) =
v1 · v2

∥v1∥ ∗ ∥v2∥ (21)

where v1 and v2 denotes point vector in dimension space. Based on Eq. (21), cosine distance are

calculated as:

distcosine (v1, v2) = 1 − sim(v1, v2) (22)

Eq. (22) is used in function KMeansByCosine of Algorithm 6. The silhouette coefficient evaluates

clustering quality by measuring how similar an object is to its own cluster compared to other

clusters. In the line 7 of Algorithm 6, the silhouette coefficient is computed using cosine distance.

Let a point 𝑖 ∈ 𝐶𝐼 , then the average distance of this point to other points in the same cluster 𝐶𝐼 is

measured by 𝑎(𝑖), as shown in Eq. (23):

𝑎(𝑖) = 1

|𝐶𝐼 | − 1
∑︁

𝑗∈𝐶𝐼 ,𝑖≠𝑗

distcosine (v𝑖 , v𝑗 ) (23)
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Algorithm 5 Transfer Learning Path Generation Algorithm

Input: different circuit netlist files N = {𝑁1, 𝑁2, . . . , 𝑁𝑛}
Output: Transfer Learning path S
1: function TranferRouteGenerate(N)
2: V = CircuitGraphLearning(N, 128) ⊲ Algorithm 1

3: Calculate the cosine similarity between two designs to obtain the similarity matrix D𝑛×𝑛
4: L = {}, S = {}
5: for 𝑖 ← 1, 𝑛 do
6: 𝑙𝑖 = 0, 𝑆𝑖 = {𝑣𝑖 } ⊲ 𝑙𝑖 denotes transfer path length, 𝑆𝑖 denotes transfer path

7: vi = {0, 0, · · · , 0} ⊲ 1 × 𝑛 vector, 0 denotes design is not visited by transfer path

8: 𝑙𝑖 , 𝑆𝑖 = calcCosineLength(𝑣𝑖 , 𝑙𝑖 , 𝑆𝑖 , vi,D) ⊲ Calculate the path length from the initial point 𝑣𝑖 to the

adjacent point with the highest cosine similarity

9: Li×1 = L ∪ {𝑙𝑖 }, S𝑖×𝑛 = S ∪ {𝑆𝑖 }
10: end for
11: 𝑙max = max {L𝑛×1}
12: S1×𝑛 = Smax

13: return S
14: end function
Input: initial design 𝑣 , transfer path length 𝑙 , transfer path 𝑆 , visit flag vector vi, similarity matrix D
Output: transfer path length 𝑙 , transfer path 𝑆 .

1: function calcCosineLength(𝑣, 𝑙, 𝑆, vi,D)

2: if all design are visited then ⊲ all elements of vi is 1
3: return 𝑙, 𝑆
4: end if
5: 𝑣𝑚𝑎𝑥 = 𝑣

6: for 𝑖 ← 1, 𝑛 do
7: if 𝑣𝑖 are not visited then ⊲ vi[i] = 0

8: if (𝑣 , 𝑣𝑖 ).length > (𝑣, 𝑣𝑚𝑎𝑥 ).length then ⊲ compare current edge with current longest edge

9: 𝑣𝑚𝑎𝑥 = 𝑣𝑖
10: end if
11: end if
12: if the longest edge (𝑣, 𝑣𝑚𝑎𝑥 ) is found then ⊲ 𝑣𝑖 denotes the i-5h design

13: mark 𝑣𝑚𝑎𝑥 as visited, 𝑆 = 𝑆 ∪ {𝑣𝑚𝑎𝑥 }, 𝑙 = 𝑙 + (𝑣, 𝑣𝑚𝑎𝑥 ).length
14: end if
15: end for
16: return calcCosineLength(𝑣𝑚𝑎𝑥 , 𝑙, 𝑆, vi,D)
17: end function

The average distance of this point to points in other clusters 𝐶 𝐽 is measured by 𝑏 (𝑖), as shown in

Eq. (24):

𝑏 (𝑖) = min

𝐽 ≠𝐼

1

|𝐶 𝐽 |
∑︁
𝑗∈𝐶 𝐽

distcosine (v𝑖 , v𝑗 ) (24)

Then the silhouette coefficient of this point is 𝑠 (𝑖), as shown in Eq. (25):

𝑠 (𝑖) = 𝑏 (𝑖) − 𝑎(𝑖)
max{𝑎(𝑖), 𝑏 (𝑖)} , if |𝐶𝐼 | > 1 (25)

The silhouette coefficient for this classification 𝑘 is given by Eq. (26):

𝑆𝐶 = max

𝑘∈𝐶
𝑠̃ (𝑘)

(26)
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where 𝑠̃ (𝑘) represents the average 𝑠 (𝑖) value of all points when they are clustered into 𝑘 , and 𝐶

represents the collection of all clusters resulting from the clustering process. In Fig. 10, we analyze

Fig. 10. Silhouette coefficient for K-Means clustering when 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (number of clusters) = {2, 3, · · · , 15}.

the silhouette coefficient for K-Means clustering on the ISPD2015 benchmarks, which indicates that

the silhouette coefficient is maximized when 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 5. The mapping from ID to design name is

shown in Table 3. As shown in Fig. 9, we cluster designs along the transfer path when 𝑛clusters = 5.

Fig. 11. The sample transfer strategy on our parameter transfer path is illustrated. The bold red arrow
represents the overall flow of sample transfer and tuning design. sim(D1,D2) is cosine similarity. In some
cases, designs within the same cluster may be separated in the transfer path, we share the parameter samples
of this cluster to facilitate parameter tuning.

3.4.3 Parameter Transfer Strategy. In Section 3.4.2 above, we cluster designs into multiple clusters.

To fully utilize parameter samples from different designs and improve the efficiency of parameter

tuning, we implement the sample transfer strategy depicted in Fig. 11. Specifically, the first step,

Cluster, outlines the flow of Algorithm 6. After clustering, we obtain a cluster path that guides

the parameter tuning process effectively. For example, in the Tuning on Cluster C1 part, we

tune parameters for design D1 using the argmax EI function, which predicts the new parameters

𝑥new
1

. The corresponding value 𝑦new
1

is obtained from the placement tool by evaluating 𝑥new
1

, and
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Algorithm 6 Transfer Nodes Cluster Algorithm

Input: Transfer path with one node S𝑛×1, number of iteration 𝑇 .

Output: Transfer learning path T = {𝑇1,𝑇2, . . . ,𝑇𝑘 ′ } (𝑘 ′ denotes the number clusters), where

𝑇𝑖 (𝑖 ∈ [0, 𝑘 ′]) denotes the set of points of a certain cluster.

1: function TransferCluster(S)
2: C = {}
3: for 𝑘 ← 2, 𝐾 do
4: C𝑘 = KMeansByCosine(S, 𝑘,𝑇 ) ⊲ K-Means using cosine distance

5: C = C ∪ {C𝑘 }
6: end for
7: T = 𝐹𝑖𝑛𝑑𝐵𝑒𝑠𝑡𝑆𝐶 (C) ⊲ choose cluster with best silhouette coefficient

8: return T
9: end function

Input: Transfer path with one node S𝑛×1, number of cluster 𝑘 , number of iteration 𝑇 .

Output: Clusters C.
1: function KMeansByCosine(S, 𝑘 , 𝑇 )
2: U𝑘×𝛿 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡 (S, 𝑘) ⊲ randomly select k points from S
3: C𝑘×𝛿 ← U = {{v1}, {v2}, . . . , {v𝑘 }}
4: for 𝑡 ← 0,𝑇 do
5: for v𝑖 ∈ S − C do
6: 𝑑𝑖 = 0, 𝑘 = −1
7: for u𝑗 ∈ U do
8: if 𝑑𝑖 < sim(v𝑖 , u𝑗 ) then
9: 𝑑𝑖 ← sim(v𝑖 , u𝑗 )
10: 𝑘 ← 𝑗

11: end if
12: end for
13: C(𝑘 ) = C(𝑘 ) ∪ {v𝑖 }
14: end for
15: U← {}
16: for 𝑘 ← 0, |C| do
17: U𝑘 |

1×𝛿 ←𝑚𝑒𝑎𝑛(C(𝑘 )𝑐′×𝛿 ) ⊲ 𝑐′ represents the number of elements in the k-th

cluster

18: end for
19: end for
20: return C
21: end function

the sample pair (𝑥new
1

, 𝑦new
1
) is added to the sample set P1. Before tuning design D2, the similarity

between D1 and D2 is calculated (as shown in the gray module at the top of the Tuning on Cluster
C1 section). If the similarity exceeds the threshold 𝜁 (default: 0.6), P2 is initialized with P1; otherwise,

it is initialized as an empty sample set. After completing the tuning of D2, the process moves to

tuning D3, which belongs to a different cluster, C2. This transition requires the operations outlined

in the pink module, as illustrated in the center of the figure. Subsequently, tuning continues with

D3, D4, and D5. The entire tuning process concludes after successfully completing the tuning of D5.
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Table 3. Detail Characteristics of the ISPD 2015 and iEDA 28nm Benchmarks

the ISPD 2015 Benchmarks

Design #macros #cells #nets #fence regions % area utilization

mgc_des_perf_a 4 108K 115K 4 71.70

mgc_des_perf_b 0 113K 113K 12 49.70

mgc_edit_dist_a 6 127K 134K 1 61.60

mgc_fft_2 0 32K 32K 0 49.90

mgc_fft_a 6 31K 32K 0 74.00

mgc_fft_b 6 31K 32K 0 74.00

mgc_matrix_mult_a 5 150K 154K 0 76.70

mgc_matrix_mult_b 7 146K 152K 3 72.60

mgc_matrix_mult_c 7 146K 152K 3 77.31

mgc_pci_bridge32_a 4 30K 34K 3 40.80

mgc_pci_bridge32_b 6 29K 33K 3 50.60

mgc_superblue11_a 1458 926K 936K 4 73.00

mgc_superblue12 89 1287K 1293K 0 57.00

mgc_superblue14 340 612K 620K 0 77.61

mgc_superblue16_a 419 680K 697K 2 73.90

mgc_superblue19 286 506K 512K 0 80.70

the iEDA 28nm Benchmarks

Design #macros #cells #nets #pins % area utilization

apb4_archinfo 87 389 378 1K 68.08

apb4_clint 161 1K 1K 3K 61.84

apb4_i2c 141 785 722 2K 63.20

apb4_ps2 96 512 494 2K 66.52

apb4_pwm 161 1K 885 3K 55.47

apb4_rng 67 193 202 577 75.56

apb4_timer 141 718 686 2K 62.73

apb4_wdg 161 1K 1K 3K 58.29

s1238 74 348 289 1K 62.75

s13207 143 720 640 2K 58.18

s1488 64 379 324 1K 75.50

s15850 240 2K 2K 7K 55.46

s38417 484 6K 6K 20K 55.71

s713 46 134 124 343 46.57

s9234 109 653 581 2K 65.10

gcd 77 295 268 890 61.84

4 EXPERIMENTS
4.1 Experimental Settings
Our framework is implemented in Python, supporting placement engines such as DREAMPlace

and iEDA-iPL as demonstrated in this paper. In our experiments, the framework runs on Machine

A (2*Intel Xeon Gold 6338 CPU with 4*A10), B (2*Intel Xeon CPU E5-2698 v4 with 4*V100), and

Machine C (160*Intel(R) Xeon(R) Platinum 8380 CPU). Specifically, we conducted our experiments

on ISPD2015 benchmarks on Machine A and B with 5 parallel processes respectively, and iEDA
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28nm benchmarks on Machine C with a single process. The detailed characteristics of the iEDA

28nm and ISPD2015 benchmarks are summarized in Table 3.

Since there may be significant variations in the hardware environment across physical machines,

we have explored a fair method for measuring the performance of methods on different machines.

The fair indicator is the number of iterations, which isn’t affected by hardware changes. As shown

in Fig. 12, the iterations consist of both GP, LG, and DP. Specifically, LG and DP occur during the

final iteration, while GP is performed in the preceding iterations.

(a) (b)

Fig. 12. The number of iterations and total time of placement on different machines with the same parameters.
(a) The number of iterations is the same on the A10 and V100 machines, and the iteration curves are also
identical. (b) However, the total runtime on the A10 machine is longer than that on the V100 machine

4.2 Automated Placement Evaluation
4.2.1 Parameter Tuning Results Analysis on ISPD2015 Benchmarks. In general, we need to repeatedly
configure parameters and run the placement engine for every new design manually, which is a

time-consuming and inevitable step. In this section, we conduct our experiment on the ISPD2015

benchmarks. As shown in Table 4, we apply our proposed method to tune the parameters for

these benchmarks without human intervention. The transfer learning path for parameter tuning is

illustrated in Fig. 9. This path effectively guides the transfer of previously tuned historical parameter

sets to new designs.

Specifically, in the first step, iPO tunes the initial design mgc_superblue16_a in the transfer path

for 2000 iterations. The best metric for this design is identified at the 1532nd iteration. Next, for a

new design mgc_superblue19, which belongs to the same cluster as mgc_superblue16_a, the cosine
similarity between these two designs is 0.7. As shown in Fig. 11, since this similarity exceeds the

threshold of 0.6, the historical parameter samples from mgc_superblue16_a are directly transferred

to initialize tuning for mgc_superblue19. iPO then tunes mgc_superblue19 for only 100 iterations,

where the best metric is identified at the 32nd iteration. Following the processes illustrated in

Fig. 11, all designs in the ISPD2015 benchmarks are efficiently tuned by our framework, showcasing

the effectiveness of transfer learning combined with parameter optimization.

Table 4, we observe that the parameter tuning search iterations for the first design reach 1532.

However, for all subsequent designs, the search iterations are significantly reduced, remaining

below 30 in most cases except for 84 on mgc_superblue11_a. This highlights the effectiveness of
our parameter transfer strategy. By performing extensive parameter tuning on the first design, our
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Table 5. Experimental results on the iEDA 28nm benchmarks are presented using iEDA.

Design
iEDA-iPL iPO

HPWL WNS TNS TR HPWL WNS TNS TR #s

(e6) (ns) (ns) (s) (e6) (ns) (ns) (s)

apb4_archinfo 3.72 0.340 0.000 182 3.60 0.343 0.000 154 74
apb4_clint 11.34 −0.401 −6.473 294 10.84 −0.395 −6.188 340 89
apb4_i2c 7.27 −0.235 −7.393 240 6.73 −0.224 −6.986 169 94
apb4_ps2 4.74 −0.028 −0.108 199 4.47 −0.018 −0.027 170 32
apb4_pwm 11.03 −0.314 −10.516 265 9.98 −0.304 −10.083 289 85
apb4_rng 2.23 0.187 0.000 171 2.13 0.192 0.000 193 3
apb4_timer 7.55 −0.370 −14.244 248 7.22 −0.362 −14.066 256 84
apb4_wdg 10.66 −0.456 −16.112 423 10.15 −0.456 −15.495 356 4
s1238 3.07 0.004 0.000 123 2.87 0.006 0.000 97 13
s13207 6.06 −0.064 −0.303 173 5.89 −0.051 −0.225 172 10
s1488 4.80 −0.012 −0.013 217 4.28 −0.004 −0.007 205 282
s15850 23.22 −0.333 −30.340 697 22.35 −0.342 −29.750 695 76
s38417 71.88 −0.384 −149.884 8095 68.95 −0.380 −147.754 8049 16
s713 1.16 −0.033 −0.065 170 1.07 −0.028 −0.061 163 12
s9234 6.51 −0.234 −12.127 227 6.10 −0.241 −11.642 214 2

gcd 13.52 −0.556 −20.105 217 13.33 −0.548 −17.947 216 292

avg. impr. (%) - - - - 4.7 2.7 2.8 1.7 -

method effectively transfers prior experience to other designs, drastically reducing the computa-

tional effort required. Additionally, many occurrences of the number 1001 are marked in red, which

indicates that the placement does not converge. In our method, none are marked in red, while in

DREAMPlace, there are 7 occurrences, which shows that our method can improve convergence.

The results demonstrate iPO has an average improvement of 9.8% in HPWL, as well as average

improvements of 12.0%, 28.2%, 24.1%, and 28.2% in congestion, GP, total runtime (TR), and the

number of iterations (#iters), respectively, when compared to DREAMPlace. These results clearly

indicate that our proposed automated tuning method not only improves the quality of the place-

ment (in terms of HPWL and congestion) but also significantly reduces the number of iterations

required for parameter tuning on subsequent designs. The reduction in iterations is particularly

noteworthy as it highlights the efficiency of our parameter transfer strategy, which effectively

leverages prior tuning experiences from one design to expedite the tuning process for subsequent

designs. In addition to comparing iPO with DREAMPlace (baseline), we also evaluated it against

AutoDMP. Compared to DREAMPlace, AutoDMP achieves average improvements of 1.1% and 13.4%

in congestion and TR, respectively, without any degradation in HPWL. Compared to AutoDMP, iPO

shows an average improvement of 11% in HPWL, along with improvements of 12.3%, 74.2%, 14.0%,

and 67.1% in congestion, GP, TR, and the number of iterations (#iters), respectively. Furthermore,

iPO achieves 3.49× speed-up in #s, demonstrating the effectiveness of our method in efficiently

searching for optimal parameters.

4.2.2 iEDA 28nm Benchmarks. In this section, we conduct our experiments on the iEDA 28nm

Benchmarks. We utilize our method to optimize HPWL, WNS, and TNS. The results, as summarized

in Table 5, demonstrate significant improvements across all metrics when compared to iEDA-iPL.

The results show an average improvement of 4.7% in HPWL and 2.8% in WNS. These enhance-

ments illustrate the effectiveness of our automated tuning method in optimizing critical parameters

for VLSI placement. In addition to HPWL and WNS, we also focus on optimizing TNS, a crucial

timing metric in VLSI design. Table 5 presents the comparative results for TNS optimization. From
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Table 5, it is evident that our method consistently improves TNS across all designs, with an average

improvement of 2.8%. This substantial improvement underscores the efficacy of our automated

tuning approach in addressing critical timing metrics in VLSI placement.

The experimental results on the iEDA 28nm Benchmarks validate the effectiveness of our

automated tuning method. The significant improvements in HPWL, WNS, and TNS highlight the

potential of our approach in optimizing VLSI placement parameters. By leveraging automated

tuning, our method reduces the dependency on manual intervention, thereby enhancing the overall

efficiency and performance of the placement process.

4.3 Ablation Study
4.3.1 Ablation Study on the ISPD2015 Benchmarks Using Different Transfer Strategies. In this section,
we present the results of ablation studies aimed at evaluating the effectiveness of various transfer

strategies on the ISPD2015 benchmarks. The studies investigate how different approaches to

transferring knowledge and parameters between designs impact performance metrics such as

HPWL, congestion, and #s. The design ID denotes the id in Table 3.

Table 6. Experimental Results of Ablation Study on the ISPD2015 Benchmarks Using Different Strategies

Design ID

DREAMplace

iPO

(Automated Tuning for Each Design)

HPWL

(e6)

Cong.

(e-4)

GP

(s)

TR

(s)

#iters

HPWL

(e6)

Cong.

(e-4)

GP

(s)

TR

(s)

#iters #s

0 11.13 4.11 20.49 30.09 947 8.43 3.12 17.16 22.47 849 668

2 21.30 10.03 12.60 23.25 1001 17.29 8.12 9.83 20.06 878 219

3 1.93 5.96 5.70 11.69 587 1.62 5.00 3.53 5.72 417 2244

9 1.98 4.48 22.97 24.95 1001 1.61 3.59 14.60 16.92 703 14 059

14 268.42 36.24 18.16 64.66 955 239.67 31.60 15.19 49.34 816 1532
avg. impr. (%) - - - - - 13.5 18.3 32.5 35.1 22.6 -

iPO

(Direct Parameter Transfer)

iPO

(Cluster-Based Transfer)

0 8.43 3.12 17.16 22.47 849 9.24 3.43 13.34 22.67 747 15
2 17.37 8.26 12.60 23.25 1001 18.23 8.68 6.38 16.36 628 6
3 1.62 5.04 5.70 11.69 495 1.66 5.15 1.76 7.81 457 20
9 1.74 3.94 22.97 24.95 988 1.64 3.70 11.15 18.05 678 15
14 241.30 31.86 12.98 60.00 816 239.67 31.60 15.19 49.34 816 1532

avg. impr. (%) 12.7 16.5 11.9 8.6 8.2 12.7 15.7 67.1 35.4 35.0 1079.0

We conduct our experiments on the ISPD2015 benchmarks, employing several strategies to

optimize the process of parameter tuning. The strategies explored include:

(1) Direct Parameter Transfer: Utilizing parameters from firstly optimized design without

modifications.

(2) Automated Tuning for Each Design: The automated tuning strategy provides the best

overall performance. By dynamically adjusting tuning parameters based on the specific

characteristics of each design, it is expected to achieve the best performance in most cases.

(3) Cluster-Based Transfer: Firstly, filtering parameters based on cosine similarity thresholds

between designs. Then, transferring parameters between designs within the same cluster,

using the transfer strategy shown in Fig. 11.
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Table 6 summarizes the results of our ablation studies. The table highlights the performance

metrics achieved using different transfer strategies. From the results in Table 6, it is evident that

different strategies yield varying performance outcomes.

(1) Direct Parameter Transfer: This method achieves reasonable performance but shows

limited improvements in congestion and HPWL compared to other strategies.

(2) AutomatedTuning for EachDesign: This demonstrates improved performance in all metric

except for #s . Specifically, we observe a notable 3.8% reduction in congestion compared to the

strategy Cluster-Based Transfer, suggesting that this strategy effectively filters parameters

to better match the design characteristics of the target benchmarks.

(3) Cluster-BasedTransfer: This strategy yieldsmore balanced improvements across all metrics.

In metric #s, this achieves an 11.8× speed-up compared to the strategy Automated Tuning for

Each Design without HPWL downgrade. In addition, we observe a notable 12.7%, 15.7%, and

35.4% reduction in HPWL, congestion, and TR compared to DREAMPlace. The cluster-based

approach appears to leverage the similarity between designs more effectively, leading to

relatively better parameter adaptation and optimization.

The ablation studies highlight the impact of different strategies on the process of parameter

tuning. The automated tuning for each design and cluster-based transfer strategies outperform
the direct parameter transfer in all metrics, demonstrating their effectiveness in enhancing

parameter tuning efficiency.

Table 7. Ablation Study Results on ISPD2015 Benchmarks with Different Parallel Processes

Design

Parallel Process (es)

1 5 10

HPWL

(e6)

Cong.

(e-4)

ST

(s)

HPWL

(e6)

Cong.

(e-4)

ST

(s)

HPWL

(e6)

Cong.

(e-4)

ST

(s)

mgc_des_perf_a 8.86 3.20 14 169.05 8.63 3.15 2392.80 8.72 3.21 1284.11
mgc_edit_dist_a 18.95 9.07 9948.93 17.68 8.17 1429.79 18.20 8.74 762.48

mgc_fft_2 1.67 5.12 1674.59 1.62 5.04 857.99 1.62 5.04 428.57
mgc_pci_bridge32_a 1.66 3.70 9942.65 1.67 3.81 1346.57 1.66 3.76 965.97
mgc_superblue16_a 243.43 32.12 19 803.23 243.31 32.03 4673.93 246.96 32.49 2673.93

avg. impr. (%) - - - 0.6 1.9 419.0 −0.9 0.0 808.2

4.3.2 Ablation Studies on the ISPD2015 Benchmarks Using Different Parallel Processes. In this section,
we present the experimental results of our ablation studies conducted on the ISPD2015 benchmarks

after 100 parameter tuning iterations. The study investigates the impact of varying the number of

parallel processes on the performance of our proposed method.

From the results summarized in Table 7, we observe that increasing the number of parallel

processes leads to significant improvements in search time (ST) reduction. Specifically, with 10

parallel processes, we achieve 9.1× speed-up in ST (the columns are summed then compared),

compared to a single process. Additionally, we achieve a 1.75× speed-up in ST with only slight

performance downgrades of 1.5% in HPWL and 1.9% in congestion compared to 5 parallel processes.

These findings highlight the importance of leveraging higher parallel processes to optimize the

parameter tuning for the placement process in VLSI design. Interestingly, we found that concurrency

5 achieves slightly better Quality of Results (QoR), which may be partially influenced by the random

initialization of parameter samples. In conclusion, the ablation studies demonstrate that our method

benefits significantly from increased concurrency, leading to better optimization results on the

ISPD2015 benchmarks.
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4.3.3 Sensitivity Analysis on Different Vocabulary Size. We conducted an experiment to compare

objective metrics using four different vocabulary sets: "V-10", "V-D", "V-S", and "V-L".

• "V-D": Default vocabulary (size 12M) with rooted subgraph maximum degree 𝐷 = 2.

• "V-10": 90% random sample removal (1.2M retained) from the default vocabulary.

• "V-S": Vocabulary reduction (size 8M) with 𝐷 = 1.

• "V-L": Vocabulary expansion (size 20M) with 𝐷 = 6.

As shown in Fig. 13, we evaluate average #s, congestion, and HPWL across mgc_superblue11_a,
mgc_superblue12, mgc_superblue14, mgc_superblue16_a, and mgc_superblue19. Compared to "V-D",

"V-10" and "V-S" exhibit a 50.24% and 24.3% increase in #s. "V-L" achieves performance parity with

"V-D". Notably, HPWL and congestion metrics remain stable across all four vocabulary sizes. These

results confirm that vocabulary expansion enhances parameters optimization efficiency below 12M

entries, with diminishing returns observed beyond this critical threshold.

Fig. 13. Average metrics (#s, HPWL and congestion) comparison across different vocabulary sizes.

4.3.4 Convergence Analysis. We conduct an experiment to compare convergence efficiency using

six different initialization methods: "0", "R-5", "R-10", "R-20", "R-50", and "S-10".

• "0" (Empty Initialization): The initial parameter sample set of iPO is empty.

• "R-5": The parameter sample set is initialized with 5 randomly selected samples.

• "R-10": The parameter sample set is initialized with 10 random samples.

• "R-20": The parameter sample set is initialized with 20 random samples.

• "R-50": The parameter sample set is initialized with 50 random samples.

• "S-10": The parameter sample set is initialized with one random sample, and then 9 additional

samples are generated by copying the first sample.

As shown in Fig. 14, this experiment aims to analyze the impact of different initialization strategies

on the convergence speed and optimization performance of iPO. We compare these methods

based on key metrics such as iteration count, HPWL improvement, and runtime efficiency. The

experimental results for "0" and "R-10" have similar results for HPWL and congestion, because

method "0" will fail iPO in the first, then will take default strategy ("R-10"). Compared to "R-10",

both "R-50" and "R-20" exhibit performance degradation in HPWL and congestion. This indicates

that increased randomness undermines the effectiveness of the EI sampling criterion, leading to a

partial loss of directed search capability in the optimization process.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.



XXX:28 Lai, Liu and Li et al.

Fig. 14. Metrics (HPWL, congestion) comparison to different sample initialization on design𝑚𝑔𝑐_𝑑𝑒𝑠_𝑝𝑒𝑟 𝑓 _𝑎.

5 CONCLUSION
In this paper, we propose an intelligent parameter optimization method, iPO, which integrates

transfer learning and parallel automated parameter tuning together. Experimental results on the

ISPD2015 benchmarks show substantial improvements in HPWL and congestion compared to

DREAMPlace and AutoDMP, while results on the iEDA 28nm benchmarks demonstrate notable

improvements in HPWL, TNS, and WNS. These findings highlight the effectiveness of cross-design

parameter transfer across various metrics and benchmarks. Additionally, for further exploration,

our method achieves significant speedups in #s compared to AutoDMP, which also shows the

effectiveness of introducing the Constant Liar strategy.

Future work will focus on refining these strategies further and exploring their application to a

broader range of benchmarks and design scenarios. Our proposed method may lose effectiveness

for extremely large designs due to the inherently time-consuming placement process, signifi-

cantly prolonging each DSE iteration. For example, 100 DSE iterations would take 200 hours (2

hours/iteration), drastically reducing optimization efficiency. To address this, we will also explore

more efficient techniques specifically tailored for ultra-large designs in the future.
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