
AiLO: A Predictive Framework for Logic Optimization Using
Multi-Scale Cross-Attention Transformer
YE CAI, Shenzhen University, China
RUI WANG, Shenzhen University, China
LIWEI NI, Institute of Computing Technology, Chinese Academy of Sciences, China
MIAO LIU, University of Chinese Academy of Sciences, China
XINGYU MENG, Pengcheng Laboratory, China
XIAOZE LIN, Pengcheng Laboratory, China
JUNFENG LIU, Pengcheng Laboratory, China
BIWEI XIE, Institute of Computing Technology, Chinese Academy of Sciences, China
XINGQUAN LI∗, Pengcheng Laboratory, China

Logic Optimization (LO) is a critical stage in the chip design process, focused on improving the Quality of
Results (QoR) by optimizing circuit designs to minimize area and delay. During logic optimization, evaluating
the QoR after each iteration requires completing logic optimization and technology mapping.The evaluation
process is highly time-consuming, restricting the number of optimization iterations possible within a given
time. To address this, the AI-aided logic optimization framework (AiLO) is developed to explore more opti-
mization operator sequences (recipes). AiLO framework consists of two core components: AI-based metric
evaluation and optimization exploration. To achieve accurate evaluation, different prediction models can be
integrated. A multi-scale cross-attention Transformer (CrossLO) is introduced to simulate the optimization
structure of recipes across circuit at various scales to enhance the prediction accuracy. Moreover, the AI
evaluation module can effectively maintain the recipe ranking, even when prediction accuracy is biased. The
logic optimization exploration algorithm integrated with CrossLO (AI evaluation) shows an average improve-
ment of 14.75% over the initial version. NSGA-II (optimization module) integrated with CrossLO achieves a
significant lead over other algorithms in the same time. In addition, the AiLO framework continues to grow
with the performance of the two components, demonstrating strong adaptability and flexibility.

CCS Concepts: • Hardware → Logic synthesis.

Additional KeyWords and Phrases: Logic Synthesis, Logic Optimization, Evaluation and Optimization, Graph
Neural Network, Transformer
∗Corresponding author

This work is supported in part by the Major Key Project of PCL (No. PCL2023A03) and the NSF of Fujian Province under
Grants (No. 2024J09045).
Authors’ addresses: Ye Cai, caiye@szu.edu.cn, College of Computer Science and Software Engineering, Shenzhen Univer-
sity, Shenzhen, Guangdong, China; Rui Wang, 2300271050@email.szu.edu.cn, College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen, Guangdong, China; Liwei Ni, nlwmode@gmail.com, Institute of Computing
Technology, Chinese Academy of Sciences, Beijing, China, nlwmode@gmail.com;Miao Liu, University of Chinese Academy
of Sciences, Beijing, China; Xingyu Meng, Pengcheng Laboratory, Shenzhen, Guangdong, China; Xiaoze Lin, Pengcheng
Laboratory, Beijing, China; Junfeng Liu, Pengcheng Laboratory, Shenzhen, Guangdong, China; Biwei Xie, Institute of Com-
puting Technology, Chinese Academy of Sciences, Beijing, China; Xingquan Li, Pengcheng Laboratory, Shenzhen, Guang-
dong, China, fzulxq@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1084-4309/2025/XX-ARTXXX
https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

HTTPS://ORCID.ORG/0009-0003-6470-0364
HTTPS://ORCID.ORG/0009-0007-1620-6889
HTTPS://ORCID.ORG/0009-0003-7525-9375
HTTPS://ORCID.ORG/0000-0002-7145-9391
https://orcid.org/0009-0003-6470-0364
https://orcid.org/0009-0007-1620-6889
https://orcid.org/0009-0003-7525-9375
https://orcid.org/0000-0002-7145-9391
https://doi.org/XXXXXXX.XXXXXXX

XXX:2 Ye Cai, Rui Wang, Liwei Ni, Miao Liu, Xingyu Meng, Xiaoze Lin, Junfeng Liu, Biwei Xie, and Xingquan Li

ACM Reference Format:
Ye Cai, Rui Wang, Liwei Ni, Miao Liu, Xingyu Meng, Xiaoze Lin, Junfeng Liu, Biwei Xie, and Xingquan Li.
2025. AiLO: A Predictive Framework for Logic Optimization Using Multi-Scale Cross-Attention Transformer.
ACM Trans. Des. Autom. Electron. Syst. XX, X, Article XXX (XX 2025), 28 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 INTRODUCTION
In order to achieve more integration and functionalities, modern hardware designs are undergoing
steep increases in their complexity and processing cost. As a result, the demand for automation and
intelligence in EDA tools escalates, particularly in the domain of Logic Optimization (LO). LO is
a critical step that translates High-Level Hardware Description Languages (HDL) into optimized
gate-level netlists, targeting the optimization of key performance metrics such as area, power,
and delay to enhance the Quality of Results (QoR) [33]. Engineers apply structural optimization
transformations [23, 40] to develop optimization sequences, termed as “recipes” in LO. However,
predefined optimization recipes often lack generalizability, and the search space for such recipes
grows exponentially [24, 25, 37]. Traditional EDA tools, while capable of providing precise QoR
assessments, are usually time-consuming and require significant manual intervention for Design
Space Exploration (DSE) [48]. Moreover, the complexity and technological scale of hardware sys-
tems are rapidly expanding, which further extends the time-to-market. To address the need for
hardware development and productivity enhancement, the industry increasingly seeks EDA tools
with advanced intelligence to enable not only rapid and accurate QoR assessments but also efficient
optimization. Therefore, a solution is urgently needed to efficiently identify the best optimization
recipes.

The application of deep learning techniques, particularly Graph Neural Networks (GNNs) [34]
for graph-structured data, opens new research avenues for predicting the QoR of LO recipes. GNNs
are effective in extracting and learning structural features from circuit graphs, while Transformers
excel at capturing and representing the intrinsic characteristics of optimization recipes [36, 50]. By
integrating both GNNs and Transformers through a joint learning strategy, our approach aims to
predict the QoR of previously unseen circuit optimization recipe pairs. It not only significantly
enhances prediction accuracy, but also minimizes the trial-and-error process for engineers, accel-
erating the design workflow and providing a robust theoretical foundation and technical support
for optimization recipe exploration.

Recent researches have facilitated the integration and application of Machine Learning (ML)
technology in the field of EDA [35], and provided innovative approaches to the automation of LO
processes. Despite significant advancements, constructing more efficient design space exploration
strategies, enhancing model generalization capabilities, and reducing reliance on extensive sam-
ple data remain the primary challenges in current research in this domain. We introduce a novel
deep learning network framework that simulates the dynamic changes in graph embeddings and
optimization recipe structures across different scales. When faced with unknown optimization
recipes, it significantly improves the prediction accuracy of QoR and demonstrates predictive gen-
eralization. When tested on the Open Core and EPFL datasets in the “seen IC, Unseen recipes”
scenario, CrossLO outperforms the OpenABC baseline by an average of 35.62% and 49.42% in area
and delay prediction accuracy, respectively, and improves the rank correlation of optimization
recipes by 121.31% and 232.00%. Ablation experiments also demonstrate that CrossLO model has
strong generalization capabilities. Furthermore, the AI evaluationmodule is achieved by deploying
well-trained deep learning neural network models. Our experiments confirm that deep learning
models are capable of maintaining the ranking of recipes effectively, despite potential deviations
in predictive accuracy. By CrossLO evaluation, the top 10% were selected from a recipe that was

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

AiLO: A Predictive Framework for Logic Optimization Using Multi-Scale Cross-Attention Transformer XXX:3

promoted from a random 10% to 40.46%.With this finding, we develop an AI-aided Logic Optimiza-
tion framework (AiLO), which guides the search path of existing methods, significantly reduces
the computational and temporal costs required to obtain feedback from EDA tools. The main con-
tributions are summarized as follows:

• AiLO Framework: We integrate the AI evaluation recipe framework into recipe exploration
method to generate an AI-assisted logic optimization framework (AiLO). The AiLO frame-
work can be upgraded with component replacement to improve detection performance and
quality. The experiment proves that AiLO framework has high flexibility and adaptability.

• CrossLOmodel: We proposes CrossLO, a multi-scale cross-attention Transformer, integrat-
ing the complementary strengths of GNNs and Transformer models. It can effectively cap-
ture local features and global information within circuit graph embeddings and synthetic
optimization recipes. In the “seen IC, unseen recipes” scenario, compared with the model
without multi-scale cross-attention Transformer, the prediction accuracy and sequence rank
correlation are improved by 28.02% and 107.69%, respectively.

• AI Evaluation Module: The rapid evaluation of optimization recipes is achieved by de-
ploying well-trained deep-learning neural network models. Experiments confirm that AI
evaluation is capable of maintaining the ranking of recipes effectively, despite potential de-
viations in predictive accuracy. By integrating the AI evaluation module with CrossLO, the
selection of the top 10% of optimization recipes increases from random 10% to 40.46%. This
result offers a novel perspective for the exploration of LO.

• Logic Optimization Promotion: We integrate CrossLO with reinforcement learning (RL)
DRiLLS, heuristic algorithm (HA) NSGA-II and Bayesian algorithm (BO) BOiLS to assist
search algorithm in logic optimization. On the basis of limiting the real evaluation of 100
recipes, QoR improved by an average of 14.75% compared to the original algorithm without
integrated AI evaluation. The NSGA-II with integrated AI evaluation achieves an average
7.80% improvement over BOiLS and reduces the average run time from 8.89 hours to 11.19
minutes. With a limited optimization time of 5 hours, the NSGA-II integrated AI evaluation
achieves a fault-like lead with a 25.16% QoR improvement.

The remainder of this paper is organized as follows: A systematic review of relevant research
findings from existing literature is presented in the Section 2. Subsequently, Section 3 provides a
detailed exposition of the research approach and methodology. In the Section 4, a series of exper-
iments are designed to validate the feasibility and efficacy of the proposed methods, followed by
a compilation and analysis of the experimental data. Section 5 summarizes the core contributions
of the paper and offers perspectives on future research directions.

2 PRELIMINARIES
2.1 Logic Synthesis
Logic Synthesis is a critical phase in the design of integrated circuits (IC), which can be divided
into three fundamental stages: Translation, Logic Optimization, and Technology Mapping [20, 29].

Translation involves converting Register Transfer Level (RTL) code into an unoptimized gate-
level Boolean description with basic logic elements such as AND gates, OR gates, flip-flops, and
latches.They are typically represented in the Directed Acyclic Graph (DAG) format, specifically the
And-Inverter Graph (AIG) format [2]𝐺 = (𝑉 , 𝐸) ∈ G. Nodes𝑉 in an AIG are categorized as PI, PO,
and AND gates, with edges 𝐸 being either buffers or inverters. This format aids in identifying and
optimizing the critical paths of the circuit and is essential for subsequent physical design stages,
providing a simplified approach for the expression and manipulation of Boolean functions. This

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:4 Ye Cai, Rui Wang, Liwei Ni, Miao Liu, Xingyu Meng, Xiaoze Lin, Junfeng Liu, Biwei Xie, and Xingquan Li

G O
rf; rw; b; …

G′ = O G

G′' = � G'

QoR = {area, delay} = � G''

GO
rf; rw; b; …

AI

Logic
Optimization

Technology
Mapping

Evaluation QoR' = {area', delay'} = �' O(G)

AI
Evaluation

Design & Recipe

Traditional Now

MAPE (QoR, QoR') ↓
Rank Correlation Coefficient(Recipes)↑

Speed 282.56×↑

Fig. 1. Traditional Logic Synthesis Process and AI Evaluation

structure not only facilitates the implementation of LO tasks but also lays the groundwork for the
subsequent mapping step [30].

The objective of the Logic Optimization stage is to transform the unoptimized Boolean descrip-
tion into an optimized one that meets specific design constraints related to performance, area,
and power consumption. This step is crucial within the logic synthesis process, aiming to ensure
the correctness of logical functionalities while optimizing circuit performance metrics. A series of
structural transformation optimization operators are defined during this phase, enabling design-
ers to flexibly select and combine different optimization strategies according to specific design
objectives and constraints through a combination of serialization methods. To achieve logical op-
timization, a series of optimization operators is defined as 𝐿𝑂 = [𝑂1,𝑂2, . . . ,𝑂𝑘] ∈ LO, where 𝑘
is the number of optimization operators. Optimization operators generate optimization recipes by
permutation combinations, 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑛} ∈ R be the recipes of optimization transformations
applied to𝐺 , R represents the complete collection of recipes. Each transformation 𝑟𝑖 in 𝑅 modifies
the graph 𝐺 , yielding a new graph 𝐺 ′. This process is mathematically expressed as: 𝐺 ′ = 𝑂 (𝐺).

Technology Mapping converts the optimized Boolean description into a gate-level netlist𝐺 ′′ =
𝑚(𝐺 ′). This process leverages standard cells and logic and timing information from the technology
library, ensuring the final gate-level netlist meets the QoR requirements. As a critical step in the
design flow, This stage significantly influences both manufacturing cost and chip performance.

2.2 Motivation
In this paper, we focus on logic optimization, which is a very crucial step for improving the QoR of
circuit design. To obtain a good logic optimization result, we will run a series of logic optimization
operator sequences (recipes) and select a desirable recipe with optimal QoR metrics. Traditionally,
evaluating the QoR of a netlist produced by a recipe is very time-consuming. The reason is that,
for a given circuit graph and a recipe, we need to run logic optimization and technology mapping,
and then calculate the QoR of the mapped netlist to evaluate the effect of the recipe. As shown
in Fig. 1, given a circuit 𝐺 and a recipe 𝑂 , then we will obtain 𝐺 ′ = 𝑂 (𝐺) after performing logic
optimization, and then wewill obtain𝐺 ′′ =𝑚(𝐺 ′) after performing technologymapping, and then
we can obtain the area and delay of the netlist𝐺 ′′ by calling area and delay calculation engine.The
evaluation time of traditional process on 500 optimization recipes is about 51.99 minutes.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiLO: A Predictive Framework for Logic Optimization Using Multi-Scale Cross-Attention Transformer XXX:5

Table 1. Logical Optimization Explores Work Comparison

DRiLLS [18] BOiLS [13] BSBO [11] GraphML [14] Yang et al. [47] ABC-RL [7] Zhu et al. [51] EasySO [49] ReLS [22] AiLO(Our)

Main
Method

GNN GNN GNN
RL

GNN GNN GNN GNN
RL BO BO DL DL MDP MDP FC layer Transformer

RL RL RL RL Explorer Explorer

Evaluation ABC ABC ABC ABC ABC ABC ABC ABC AI Pred AI Pred
ABC ABC

Module A2C
GCN
DNN
RL

GraphSage
LSTM
PPO

GCN
MCTS
PPO

GCN
MDP
RL

RL-Env GCN
FC Layer
Explorer

GraphSage
GP EAC GCN Transformer
TR BSBO MDP MSCAT

PPO Explorer

Solution Operator Recipe Recipe Recipe Operator Operator Operator Operator Recipe Operator
Recipe

A new approach for evaluation is based on an AI model, as shown in Fig. 1. Specifically, given a
circuit𝐺 and a recipe𝑂 , we no longer need to perform logic optimization, technology mapping, or
QoR calculation. Instead, we only need to train an AI model to evaluate the QoR.TheAI-based eval-
uation method takes approximately 11.04 seconds for 500 optimization recipes, making it 282.56×
faster than traditional evaluation. Oncewe achieve significant acceleration, we can explore 282.56×
recipes within a given time. And then, with various heuristic probabilistic optimization methods,
we have a high likelihood of discovering higher-quality recipes and logic optimization results.

Additionally, to ensure the QoR of each recipe, accurate AI evaluation is required, meaning we
need to minimize the𝑀𝐴𝑃𝐸 (𝑄𝑜𝑅,𝑄𝑜𝑅′) as shown in Fig. 1. Therefore, we have designed the QoR
prediction model CrossLO, which achieves higher accuracy compared to existing techniques. If it
is not possible to guarantee a small 𝑀𝐴𝑃𝐸, then the AI evalution model should ensure that the
top few solutions with high QoR still rank among the highest. Our experiments show that our AI
model can achieve both small𝑀𝐴𝑃𝐸 and high rank maintenance rate of the top 10%.

2.3 Related Works
2.3.1 QoR Prediction. A modular fusion network architecture is utilized, which correlates initial
circuits and optimization recipes with the final QoR. Recent advances in logic synthesis within
the realm of ML research include the introduction of OpenABC-D by Chowdhury et al. [8], a com-
prehensive and well-annotated dataset that establishes a benchmark for ML-assisted IC synthesis.
OpenABC enables the construction of universal learning frameworks, achieving pioneering results
in QoR prediction by evaluating existing solutions. Chenghao Yang et al. [47] employed a circuit
feature extractor based on three typical GNNs (GCN [21], GraphSage [16], and GIN [44]) and in-
novatively proposed the use of Transformer networks [39] to extract features from optimization
recipes. They adopted a joint learning strategy that combines GraphSage and Transformers, effec-
tively enhancing the predictive performance of unknown circuit optimization recipe pairs. LOSTIN
[42] integrates GNNs for graph learningwith Long-Short-TermMemory Networks (LSTM) [17] for
the optimization of recipe encoding. Based on LOSTIN, GNN-H [43] represents each synthesis pro-
cess as a fixed-length vector to generate super-node embeddings, predicting QoR trajectories with
high precision. Methods in often simplistically merge graph embeddings and recipe embeddings,
using a MLP decoder to generate integrated QoR predictions. MTLSO [10] adopts a multi-task
learning framework to jointly optimize graph classification and regression tasks. This approach
enables the model benefits from shared representations and exploit inter-task dependencies. They
primarily focus on enhancing prediction accuracy and have not been fully integrated into actual
LO exploration processes.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:6 Ye Cai, Rui Wang, Liwei Ni, Miao Liu, Xingyu Meng, Xiaoze Lin, Junfeng Liu, Biwei Xie, and Xingquan Li

2.3.2 Logic Optimization Exploration. Logic optimization exploration incorporates a variety of
mainstream methods, as summarized in Table 1. However, existing methods are time-consuming,
and their performance is fixed by the deterministic nature of the algorithms, leaving little room for
further improvement. In the following sections, we will introduce and analyze the existing works
one by one. DRiLLS [18] is designed by mapping comprehensive logical optimization problems
to the game environment and deploying A2C agents to find the best optimization path. Recipe
optimization is achieved with a single adjustment operator. BOiLS [13] introduced the first algo-
rithm to apply modern Bayesian optimization to a logical synthetic operation space. It effectively
balances the dynamic process of exploration and exploitation through Gaussian Processes (GP)
and Trust-Region Constrained Acquisition Functions. An innovative sequential black-box opti-
mization method [11] is proposed, which utilizes embedded alignment units and proxy models
to balance exploration and exploitation to achieve efficient optimization exploration in logical
synthesis. Both the BOiLS and black-box are optimized by adjusting the entire recipe. The core
idea of GraphML [14], Yang et al. [47], ABC-RL [7], Zhu et al. [51] and EasySO [49] is to utilize
GNNs to represent the state and information of circuits and classify them into appropriate actions
within the RL framework. This enables the selection of optimization operators and the analysis of
rewards at each step. By maximizing the cumulative rewards, these methods achieve the optimal
QoR for circuits. Moreover, each method incorporates unique optimization strategies in the opti-
mization process, further enhancing their performance. ReLS [22] effectively makes use of GNN
and retrieval database to guide search algorithms. Existing works are limited by the performance
ceiling determined by the fixed algorithms. The AiLO framework can flexibly replace the evalu-
ation and exploration components, enabling incremental growth. We design a more powerful AI
evaluation model, CrossLO, and integrated it into the AiLO framework. This integration signifi-
cantly reduces the dependence on time-consuming assessments using traditional EDA tools. The
evaluation module can provide QoR for different recipe lengths based on the exploration approach,
enabling feedback for single-step, multi-step, or complete recipe solutions.

3 AiLO FRAMEWORK
In this section, we will delve into the construction and operation of the AiLO framework. As
shown in Fig. 2, the AiLO framework is composed of two core parts: AI-based metric evaluation
and optimization exploration. The AI evaluation module mainly has two key components: QoR
prediction and ranking. In the QoR prediction part, we can design a neural network to evaluate
optimization metrics. In this work, we introduce CrossLO to achieve a high evaluation accuracy
and a good generalization of the prediction of unseen recipes. In addition, it is challenging to
accurately evaluate metrics for some evaluation tasks. In such cases, our primary objective is to
provide a ranking of the metrics among the various solutions. The QoR ranking module is used
to rank the solution candidates. For optimization exploration, there are many effective techniques:
such as the heuristic search, Bayesian optimization, and reinforcement learning. In this work, we
embed the above techniques into AiLO framework as search engines, use AI evaluation auxiliary
logic optimization exploration. We design rich experiments to demonstrate the effectiveness and
flexibility of AiLO.

3.1 CrossLO Model
We show the overview of our CrossLO model in Fig. 3, it is composed of three key parts: (1) the
GNN encoder for the AIG, which captures its structural features; (2) the recipe encoder, enhanced
by a self-attention Transformer, which learns the overall LO process of the recipe; (3) a multi-scale
cross-attention Transformer that integrates both graph and recipe encoding to predict QoR across
local and global domains for the execution of the optimized recipe.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiLO: A Predictive Framework for Logic Optimization Using Multi-Scale Cross-Attention Transformer XXX:7

AIG
Random

Recipes
Graphml

QoR

Ranking

(2) Yosys-ABC

Select MutateCrossover

…

(1) AI Evaluation：CrossLO (3) Optimization Exploration：NSGA-II

Nondominated

Sorting

Congestion

Calculating

Parent

Population

Offspring

Population

① ②

AI
QoR

Prediction

Fig. 2. The Framework of AiLO: (1) The AI evaluation module can quickly evaluate a large number of ran-
domly generated recipes, and submit high-quality recipes to the optimization exploration module; (2) Yosys-
ABC tests recipes to generate real QoR information for the optimization exploration module; (3) The opti-
mization exploration module further optimizes and explores the optimal solution according to the guidance
of the AI evaluation module

 GNN Node Embedding
+

aggregate

+

combine

MLP

mean

Original
Design

rf
rw
b

rf –z
rs

rf -l

0

4

7

5

8

1
……

Recipe

Graphml

Small Patch Embedding Large Patch Embedding

cat

cat cat

Multi-Scale Cross-Attention Transformer

Small Branch Transformer
Encoder

Large Branch Transformer
Encoder

Cross-Attention Module

pooling

prediction

MLP MLP

+

update

QoR

Graph
Embedding

Recipe
Embedding

max

cat

R
ec

ip
e

T
ra

ns
fo

rm
er

E

nc
od

er
(2

)

(1)

(3)

Fig. 3. The Architecture of the CrossLO Model

3.1.1 Graph Encoder. We use GraphSage [16] to obtain graph embeddings h𝐺 . The GraphSage
architecture consists of five layers, where each layer performs aggregation and combination pro-
cesses, iteratively updating node representations by summing the node and edge embeddings.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:8 Ye Cai, Rui Wang, Liwei Ni, Miao Liu, Xingyu Meng, Xiaoze Lin, Junfeng Liu, Biwei Xie, and Xingquan Li

Transformer
Encoder Layer

Multi-head

Attention

Layer

Normalization

Dropout

Input

Embedding

Sqrt

Dropout

Feed forward

Multi-head

Self-Attention

Layer

Normalization

Linear

Activation

Dropout

Linear

Dropout

Synthesis Optimization Operator

Fig. 4. Logic Optimization Recipe Encoder

Specifically, the node representation h(𝑙)
𝑣 in layer 𝑙 is updated by aggregating the previous rep-

resentation h(𝑙−1)
𝑣 of the node 𝑣 with the embeddings h(𝑙−1)

𝑢 of neighboring nodes 𝑢 ∈ N (𝑣) and
h(𝑙−1)
𝑒 of edges 𝑒 = (𝑢, 𝑣) within the neighborhood N(𝑣) of the node 𝑣 [19]. After 𝐿 iterations, the

representation of the node h(𝐿)
𝑣 is derived through the aggregation and combination procedures.

a(𝑙)𝑢 = AGGREGATE({h(𝑙−1)
𝑢 : ∀𝑢 ∈ N (𝑣)}, {h(𝑙−1)

𝑒 : 𝑒 = (𝑣,𝑢)}) (1)

h(𝑙)
𝑣 = COMBINE(h(𝑙−1)

𝑣 , a(𝑙)𝑢) (2)

where a(𝑙)𝑢 denotes the aggregation of node and edge embeddings at the 𝑙𝑡ℎ iteration, h(𝑙)
𝑣 represents

the updated node embedding, h(𝑙)
𝑢 is the embedding of the neighboring node 𝑢 ∈ N (𝑣), and h(𝑙)

𝑒

is the edge embedding between nodes 𝑢 and 𝑣 . The update is performed using an MLP, followed
by a ReLU activation function. The final node embeddings h(𝐿)

𝑣 at layer 𝐿 are then used to derive
the graph embedding h𝐺 . A graph pooling operation is applied, where each node embedding h(𝐿)

𝑣

undergoes averaging and maximum aggregation during the last message passing iteration 𝐿. The
resulting vectors are concatenated to produce the final graph embedding h𝐺 :

h𝐺 = cat
(
1
𝑁

∑
𝑣∈V

h(𝐿)
𝑣 ,max

𝑣∈V
h(𝐿)
𝑣

)
(3)

3.1.2 Recipe Encoder. The encoder architecture as shown in Fig. 4, extracts feature representa-
tions from optimized recipes. Each operation is mapped to an embedding vector e𝑖 through the
embedding layer, followed by processing through multiple Transformer encoder layers. Within
each layer, the embedding vectors undergo the multi-head self-attention mechanism, described in
Equation (4), to capture inter-dependencies and infer the global structure of the recipe [28]. This
mechanism preserves long-distance interactions, maintaining the global context of the data.

The multi-head self-attention mechanism is briefly introduced here. For detailed explanation,
see the papers [39?].

MultiHead(Q,K,V) = Concat (head1, . . . , headℎ)𝑊𝑂 (4)

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiLO: A Predictive Framework for Logic Optimization Using Multi-Scale Cross-Attention Transformer XXX:9

The output is processed through layer normalization to standardize the distribution of the embed-
ded vectors:

LN (A𝑖) = 𝛾
(
A𝑖 − 𝜇√
𝜎2 + 𝜖

)
+ 𝛽 (5)

The normalized vectors are passed through a feedforward network for further feature extraction,
as described in:

F𝑖 = max (0, LN (A𝑖)𝑊1 + 𝑏1)𝑊2 + 𝑏2 (6)

This architecture enables the encoder to effectively capture complex relationships within the
optimization recipe, providing high-quality feature representations h𝑛𝑟 for logic synthesis opti-
mization, where 𝑛 denotes the length of the optimization recipe.

3.1.3 Multi-Scale Cross-Attention Transformer. Inspired by the works of CrossViT [6] and Luis
H. M. Torres et al. [38], we propose an innovative cross-attention mechanism that leverages a fea-
ture fusion strategy to combine the one-dimensional features from two branches using multi-scale
representations in one-dimensional graph embeddings. For any graph structure, there exists a re-
construction operator that satisfies a specified error bound, thereby ensuring the completeness of
the graph structure decomposition and providing the necessary theoretical foundation for multi
scale decomposition [4]. Moreover, the lower-bound theorem of local-global information flow re-
veals the information gain across attention mechanisms, thereby providing theoretical support for
the effectiveness of multiscale Transformers in terms of information flow and pattern learning
capabilities [26]. Collectively, these theorems validate the feasibility and efficacy of the multi-
scale cross-attention Transformer in handling complex structures. The multi-scale Transformer
architecture demonstrates more outstanding deep learning representation capabilities compared
to the single-scale architecture. The research results of CrossViT [6] and Liu et al. [26] have been
fully proved and experimentally verified, clearly revealing the significant advantages of multi-
scale cross-learning. Fig. 5 shows that the proposed multi-scale Transformer encoder serves as a
convergence module G, integrating graph and recipe embeddings. The aim is to propagate the
graph embedding h𝐺 and the optimized recipe embedding h𝑛𝑟 across two independent branches at
different scales.

Both graph and recipe embeddings are treated as recipes of one-dimensional (1D) embedding
tokens. The model functions as a graph attribute predictor at varying scales, with the graph em-
bedding h𝐺 mapped onto a recipe of patches x in terms of 1D visual features. By dividing the 1D
feature vectors into 𝑁 = (⌊ℎ𝐺/𝑃⌋)2 patches of size 𝑃 , each patch denoted as x𝑝 , the optimization
operators are encoded into corresponding patches r𝑝 . Both patch embeddings are concatenated
and projected into the Transformer dimension (D).

x = [x1𝑝 , x2𝑝 , . . . , x𝑁𝑝 , r1𝑝 , r2𝑝 , . . . , r𝑛𝑝] (7)

ppatch = xW (8)

where x𝑐𝑙𝑠 is appended to the patch embeddings as an aggregate indicator for the classification
output vector. The Transformer also incorporates a positional embedding p𝑝𝑜𝑠 to locate elements
within the input recipe and learn positional information.

The Transformer block comprises a multi-head self-attention (MSA) layer followed by a feed-
forward (FF) network.TheMSA operation employs a set of queriesQ, keysK, and valuesV, derived
from the input patch embeddings, each of dimension 𝐷 . As shown in Equation (9), the attention
computation involves the dot product of each query in Q with keys in K, applying the softmax
function, and computing the attention weights for each value in V.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:10 Ye Cai, Rui Wang, Liwei Ni, Miao Liu, Xingyu Meng, Xiaoze Lin, Junfeng Liu, Biwei Xie, and Xingquan Li

Multi-Scale Cross-Attention Transformer

Cross-Attention Module

prediction

MLP MLP

+

Layer Normalization

Multi-head Self-Attention

Layer Normalization

Feed Forward Network

Layer Normalization

Multi-head Self-Attention

Layer Normalization

Feed Forward Network

������
� ������

�

�� ��

Fig. 5. Multi-Scale Cross-Attention Transformer

Cross-Attention Module

��

����
’�

������
� ����

�

�� �� ��

Concat

×

×

+

softmax

��

����
�

Concat

������
�

��

Q K V

Fig. 6. Cross Attention Module

Attention(Q,K,V) = softmax
(
QK𝑇
√
𝐷

)
V (9)

Attention Multi-Head (𝑄,𝐾,𝑉) = CONCAT (head 1, . . . , head 𝐻)𝑊 (10)

headj = Attention
(
𝑄𝑊𝑄

𝑗 , 𝐾𝑊
𝐾
𝑗 ,𝑉𝑊

𝑉
𝑗

)
(11)

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiLO: A Predictive Framework for Logic Optimization Using Multi-Scale Cross-Attention Transformer XXX:11

The matrices (W𝑄
𝑗 ,W

𝐾
𝑗 ,W

𝑉
𝑗) represent the linear projections of the queries, keys, and values.

Within the Transformer block, the feed-forward network consists of a two-layer MLP, followed
by a GELU activation function after the first linear layer. Layer normalization and residual con-
nections are applied between the MSA and the feed-forward networks. The deep representations
h𝑇 propagated through the attention layer are as follows:

h(0) = [p𝑐𝑙𝑠]
[
ppatch

]
+ ppos (12)

ℎ𝑙
∗
𝑇 = ℎ𝑙−1𝑇 +𝑀𝑆𝐴

(
𝐿𝑁

(
ℎ𝑙−1𝑇

))
(13)

ℎ𝑙𝑇 = ℎ𝑙
∗
𝑇 + 𝐹𝐹

(
𝐿𝑁

(
ℎ𝑙

∗
𝑇

))
(14)

where 𝑙 = 1, 2, . . . , 𝐿, h(𝑙) represents the hierarchical representation at depth 𝑙 , p𝑐𝑙𝑠 is the classifi-
cation token, ppatch is the patch embedding token, and p𝑝𝑜𝑠 is the positional embedding token.

Themulti-scale Transformer utilizes varying patch sizes to generate multi-scale representations
of graph embeddings for QoR prediction. The goal is to merge fine-grained and coarse-grained
patch information by propagating 1D graph embeddings through two independent branches at
different scales. The model consists of 𝐿 Transformer blocks, each divided into:

• Small-Branch Transformer Encoder: Accepts smaller patch sizes to learn complementary
representations, focusing on local connections within embeddings. By retaining more de-
tailed dimensions (e.g., higher feature dimensions or shorter recipe lengths), the model is
forced to capture local patterns (such as gate-level connections and the local effects of par-
tial optimization operators on subgraphs).

• Large-Branch Transformer Encoder: Accepts larger patch sizes to learn broader represen-
tations, capturing global structure and providing a wider context for better generalization
across diverse graph attributes. By reducing the dimensionality through pooling to compress
the image and recipe length, the attention mechanism is more inclined to focus on global
dependencies (such as the connections between subgraphs relative to the small-branch and
the impact of longer recipe on larger subgraphs).

Embedding information is exchanged between the two branches, merging patch embeddings
with the classification tokens of both branches, leveraging multi-scale representations of 1D graph
embeddings through effective feature fusion.The cross-attention module facilitates the exchange
of patch embeddings between the small and large branches. Specifically, the classification token
of the small branch interacts with the patch embeddings of the large branch, and vice versa. This
process is formalized as:

p′𝑐𝑙𝑠 = [f (p𝑐𝑙𝑠) ∥ p𝑝𝑎𝑡𝑐ℎ] (15)
where p′

𝑐𝑙𝑠
represents the input embedding for cross-attention, f (p𝑐𝑙𝑠) is the transformation of the

small branch classification token, and ppatch represents the patch tokens. The module computes
the cross-attention between the interaction token p′ and p𝑐𝑙𝑠 , consolidating the compacted patch
information summarized by the classification token in the smaller branch. Analogous to the Multi-
Head Self-Attention (MSA) mechanism, different heads are generated through linear projections
of queries Q, keys K, and values V, which are mapped to distinct embedding spaces. Multi-Head
Cross-Attention (MCA) is preceded by layer normalization and residual connections. The output
of the cross-attention mechanism is computed as follows:

h𝑐𝑙𝑠 = f (p𝑐𝑙𝑠) +M(L([f (p𝑐𝑙𝑠) ∥ p𝑝𝑎𝑡𝑐ℎ])) (16)
y = [g(h𝑐𝑙𝑠) ∥ p𝑝𝑎𝑡𝑐ℎ] (17)

Here, h𝑐𝑙𝑠 represents the updated classification token, and y denotes the output tokens of the
minor branch.The functions f and g are projection functions, while p𝑐𝑙𝑠 corresponds to the original

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:12 Ye Cai, Rui Wang, Liwei Ni, Miao Liu, Xingyu Meng, Xiaoze Lin, Junfeng Liu, Biwei Xie, and Xingquan Li

classification token of the minor branch. Additionally, p𝑝𝑎𝑡𝑐ℎ refers to the patch tokens of both the
major and minor branches. Following the cross-attention mechanism, two Multi-Layer MLP heads
employ the updated classification tokens, p𝑠

𝑐𝑙𝑠
and p𝑙

𝑐𝑙𝑠
, from both branches to predict the attributes

of various tokens. The summation of these predictions yields the ultimate design QoR.

3.2 AI Evaluation Module
In the AiLO Framework, the AI evaluation module is responsible for the efficient assessment of a
vast array of randomly generated logic optimization recipes. This module employs deep learning
models to predict two key performance metrics of the netlist: area and delay, following the execu-
tion of optimization recipes in AIG for logic optimization and technology mapping. To quantify
these metrics for subsequent optimization processes, we adopt a Gaussian standardization method
to ensure comparability across different indicators.

𝐼 =
𝑥 − 𝜇
𝜎

(18)

𝑥 represent the original area and delay values, while 𝜇 and 𝜎 denote the mean and standard devi-
ation of the area and delay metrics, respectively. Through Gaussian normalization, we transform
these two metrics into distributions with zero mean and unit variance, thereby granting them
balanced weight in the subsequent QoR calculations.

In pursuit of a balance between the area and delay metrics of the netlist, we employ a linear
weighting approach to calculate the QoR metric:

𝐼QoR = 𝑒′ (𝑝) = 𝑤area · 𝐼area +𝑤delay · 𝐼delay (19)
𝑤area and𝑤delay are the weights assigned to the area and delay metrics, respectively.These weights
can be adjusted according to the requirements of the specific application scenario, reflecting the
significance of different metrics. Let 𝑃 denote the set of all possible optimization recipes, 𝑒′ repre-
sent the performance evaluation function, and 𝑄 be the set of QoR metrics. The objective of the
AI-based evaluation module is to identify the recipe within 𝑃 that yields the optimal performance,
which can be mathematically formulated as:

min
𝑝∈𝑃

𝑒′ (𝑝) (20)

𝑒′ (𝑝) signifies the performance score associated with the recipe 𝑝 . Utilizing the AI evaluation
module, we select the top-performing 10% of recipes from 𝑃 based on their performance scores,
denoting this subset as 𝑃 ′ ⊂ 𝑃 :

𝑃 ′ = {𝑝 ∈ 𝑃 | 𝑒′ (𝑝) is in the top 10%} (21)
By ranking all recipes according to their QoR, we can identify the top-performing recipes. We

select the 𝑃 ′ with the highest QoR as elite recipes. This step ensures that the AiLO framework
focuses its resources on further exploring and optimizing the most promising recipes. It has been
verified that the AI evaluation module can be described as generating a distribution range for
logic optimization recipes, essentially serving as a preliminary screening of optimization recipes.
During the iterative process of solution optimization, the surrogate model often needs to be contin-
uously updated to better predict performance metrics, whereas the AI evaluation module provides
a curated set of elite recipes from the outset.

3.3 Explore Algorithm and AI Integration
Since the optimal recipe executed by the design directly affects the QoR of the final design, logic
synthesis recipe exploration involves finding an optimal optimal recipe in the circuit design to
minimize the area area and delay. The QoR is defined as a function that balances area and delay,

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiLO: A Predictive Framework for Logic Optimization Using Multi-Scale Cross-Attention Transformer XXX:13

AI Evaluate

AI
More

Random
Recipes

…

HQ Data

BO

Agent

Gaussian
Process

RL

GA
Crossover
Mutate ...

Recipei
QoR

Fitness

Rewards

Trust
Region

EDA tool

Logic
Optimization

Technology
mapping

Add & Guide

AIG AIG

R1 QoR1

R2 QoR2

Rn QoRn

…

Fig. 7. Explore Algorithm and AI Integration

and is maximized when area and delay of the circuit are minimized relative to a baseline synthesis
recipe, Resyn2. The problem can be formulated as that maximizes the QoR for circuit C. This can
be expressed as:

max
C

QoR = max
C

(
2 −

(
area(𝑟𝑒𝑐𝑖𝑝𝑒)
area(Resyn2) +

delay(𝑟𝑒𝑐𝑖𝑝𝑒)
delay(Resyn2)

))
(22)

where area(𝑟𝑒𝑐𝑖𝑝𝑒), delay(𝑟𝑒𝑐𝑖𝑝𝑒) is the area and delay of the circuit after applying the synthesis
recipe. area(Resyn2), delay(Resyn2) is the area and delay of the circuit synthesized by the Resyn2.

Traditional methods use random search and historical data to find solutions. However, the solu-
tion space is vast (𝑘𝑛), making it hard to explore fully. For example, with 13 operators and a recipe
length of 10, the solution space is 1.378 × 1011. Even tens of thousands of iterations cover only a
tiny fraction. Moreover, executing optimization recipes and obtaining feedback is time-consuming
and resource-intensive. In circuit design, it is impractical to spend much time on thousands of it-
erations. These methods typically cannot guarantee the quality of recipes at the initial stage, and
the distribution of recipes tends to concentrate in areas with poor performance. Fig. 8(a) shows
that traditional algorithms start in the upper right corner and try to move towards the lower left
for better solutions.

Despite the enhancement in optimization efficiency achieved by current advanced methods,
challenges remain in terms of computational costs and sample complexity. It is too difficult to rely
solely on the exploration of technological breakthroughs, therefore, we design AI evaluation mod-
ule to overcome these technical barriers, as shown in Fig. 7. High-quality recipes identified through
AI evaluation, as shown in Fig. 8(b), facilitate a hierarchical ranking of optimization recipes, gener-
ating a distribution profile that aims to enhance search guidance and pruning strategies, advancing
the automation and intelligence of the exploration process in LO.

This paper selects the NSGA-II algorithm due to its remarkable performance in multi-objective
optimization. It can effectively identify the Pareto front through non-dominated sorting, maintain-
ing population diversity and solution quality. Although it is somewhat dependent on the initial
solutions, it can well assess the impact of the AI evaluation module on logic optimization. More-
over, it is highly computationally efficient, adaptable, and capable of flexibly handling complex
optimization problems as well as potential future additions of objectives and constraints.

The overall pseudo-code of the algorithm is shown in Algorithm1. Step 1 uses the AI model 𝑒′
to rapidly assess a randomly generated set of 10𝑁 recipes, yielding the corresponding 𝐼𝑄𝑜𝑅 values.
Subsequently, the top 10% of individuals in 𝐼𝑄𝑜𝑅 are selected to form the initial population 𝑃0.
Step 3 to step 18 is the main cycle of algorithm iteration. The iterative process of the algorithm
commences by merging the current population 𝑃𝑡 with the offspring population 𝑄𝑡 to create a
new set 𝑅𝑡 . 𝑅𝑡 is then subjected to a fast non-dominated sorting procedure, resulting in a sorted

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:14 Ye Cai, Rui Wang, Liwei Ni, Miao Liu, Xingyu Meng, Xiaoze Lin, Junfeng Liu, Biwei Xie, and Xingquan Li

0.9950 0.9975 1.0000 1.0025 1.0050 1.0075 1.0100
area

0.96

0.97

0.98

0.99

1.00

1.01

de
la

y

240

400

560

720

880

1040

1200

1360

1520

de
ns

ity

(a) Previously Random Small Amounts of Data Distri-
bution

0.9875 0.9900 0.9925 0.9950 0.9975 1.0000 1.0025 1.0050
area

0.94

0.95

0.96

0.97

0.98

0.99

de
la

y

360

480

600

720

840

960

1080

1200

de
ns

ity

(b) Generates More Comprehensive, HQ-Data Distri-
bution

Fig. 8. Comparison of QoR Density Distribution of DifferentQuantity andQuality Recipes

Algorithm 1 NSGA-II with AI Algorithm
Input: AI model 𝑒′, recipe length, generations 𝑇 , the number of individuals in the population 𝑁
Output: optimal recipe
1: 𝐼𝑄𝑜𝑅 = 𝑒′ (10𝑁)
2: 𝑃0 = {𝑝 ∈ 10𝑁 |𝐼𝑄𝑜𝑅 is in the top 10%}
3: while 𝑡 < 𝑇 do
4: Get 𝑅𝑡 = 𝑃𝑡 ∪𝑄𝑡
5: 𝐹 = fast non dominated sort(𝑅𝑡)
6: Set 𝑃𝑡+1 = ∅, 𝑖 = 1
7: while |𝑃𝑡+1 | + |𝐹𝑖 | ≤ 𝑁 do
8: crowding distance assignment(𝐹𝑖)
9: 𝑃𝑡+1 = 𝑃𝑡+1 ∪ 𝐹𝑖

10: 𝑖 = 𝑖 + 1
11: end while
12: Sort(𝐹𝑖 , ≺𝑛)
13: 𝑃𝑡+1 = 𝑃𝑡+1 ∪ 𝐹𝑖 [1 : (𝑁 − |𝑃𝑡 + 1|)]
14: 𝐼𝑄𝑜𝑅 = 𝑒′ (10𝑁)
15: 𝑃 ′𝑡+1 = {𝑝 ∈ 10𝑁 |𝐼𝑄𝑜𝑅 is in the top (𝑁 − |𝑃𝑡+1/2|)%}
16: 𝑄𝑡+1 = make new pop(𝑃𝑡+1/2) ∪ 𝑃 ′𝑡+1
17: Set 𝑡 = 𝑡 + 1
18: end while

population 𝐹 . To construct the next-generation population 𝑃𝑡+1, the process begins with an empty
set and initializes the index 𝑖 = 1. Through iterative steps, individuals from the non-dominated
front 𝐹𝑖 are added to 𝑃𝑡+1 based on crowding distance assignment, provided the total number of
individuals in 𝑃𝑡+1, including those from the current non-dominated front, does not exceed 𝑁 . If
this condition is met, the remaining individuals in 𝐹𝑖 are sorted, and a subset is selected to complete
the construction of the next-generation population.

In each generation of the iterative process, the AI model 𝑒′ is again utilized to generate 10𝑁
new individuals for evaluation. From these newly generated individuals, those ranking in the top
(𝑁 − |𝑃𝑡+1 |/2)% of 𝐼𝑄𝑜𝑅 are selected to form 𝑃 ′𝑡+1. The next-generation offspring population𝑄𝑡+1 is

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiLO: A Predictive Framework for Logic Optimization Using Multi-Scale Cross-Attention Transformer XXX:15

then created, consisting of half of the individuals from 𝑃𝑡+1 and half from 𝑃 ′𝑡+1, therebymaintaining
population diversity and enhancing exploration capability to prevent premature convergence to
local optima. This iterative process continues until the predefined generations 𝑇 is reached.The
selection, mutation, crossover, and non-dominated sorting operations in NSGA-II are elaborated
in [5, 9]. Our method retains these components unchanged.

Similar to integrating the AI evaluation module into NSGA-II, we also incorporate AI evaluation
modules into reinforcement learning and Bayesian optimization. Based on the open-source codes
DRiLLS and BOiLS, we introduce a dual-channel evaluation mechanism: AI-based rapid screening
and precise verification.The primary objective is to leverage AI evaluation to filter out high-quality
recipes, which are then precisely verified using the traditional EDA tool Yosys-ABC. This enables
the training of agents and Gaussian process kernels to identify optimal solutions, learn to max-
imize rewards, and understand the distribution of high-quality trust regions, thereby enhancing
the exploration of superior solutions. For reinforcement learning, because CrossLO can achieve
the evaluation of recipes with different lengths, it can predict the QoR of recipe in one or more
steps during the running process. This reduces the time cost of each state recognition and action
matching. In Section 4.3, we carry out experiments to verify the algorithms.

3.4 Analysis of Deep Learning Applications in Logic Optimization
Deep learning techniques area increasingly applied in the domain of Logic Optimization (LO),
particularly for predicting the QoR accuracy. Studies [8, 42, 43, 47] show that these approaches
hold potential in this area. Specifically, the significant capabilities of deep learning in evaluating
solution quality and assisting with high-dimensional combinatorial search problems in LO can be
analyzed from the following perspectives:

• Solution Quality Assessment: Deep learning models can evaluate the quality of recipes
by learning patterns from historical data. They identify features of high-quality recipes and
predict QoR for new ones, aiding in choosing better optimization strategies.

• Assisting High-Dimensional Combinatorial Search: ML models can significantly im-
prove search efficiency. They can predict which search paths are more likely to yield high-
quality solutions, thereby reducing unnecessary searches and computations.

• Improvement of Optimization Algorithm Performance: Optimization algorithms that
incorporate AI evaluation outperform their original counterparts in terms of search time and
stability. MLmodels can be used to predict and assess the quality of recipes, while traditional
methods leverage these date to guide the search process, enablingmore effective pruning and
search path selection.

In the logic optimization exploration, the AiLO framework based on deep learning differs from
traditional optimization methods by implementing an innovative selection-guidance strategy, en-
abling fast evaluation before the optimization process begins. To validate the feasibility and effec-
tiveness of this approach, we designed experiments to confirm that, even with slight deviations
in the prediction accuracy of deep learning models, the ranking of the generated recipes can still
preserve the rank of the recipes. The detailed experimental design is outlined in Section 4.2.5.

In conclusion, the application of AI evaluation module in LO, particularly in high dimensional
combinatorial search problems, demonstrates significant potential in improving search efficiency
and reducing computational resource requirements. Through AI evaluation and the selection of
optimized recipes, ML techniques offer fresh perspectives and solutions to the LO domain.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:16 Ye Cai, Rui Wang, Liwei Ni, Miao Liu, Xingyu Meng, Xiaoze Lin, Junfeng Liu, Biwei Xie, and Xingquan Li

4 EXPERIMENTAL RESULTS
4.1 Setup
4.1.1 Environment. This section presents a series of experiments to validate the key contributions
of this study. These evaluations provided a comprehensive assessment of the architecture’s effec-
tiveness and adaptability, focusing on the quality of prediction results and design space exploration.
The experimental environment for the following tasks is as follows: The hardware configuration:
CPU (Intel Xeon Gold 5118 @ 2.30GHz), Memory (512GB of RAM), GPU (NVIDIA Tesla V100
with 32 GB VRAM), while the software configuration: Operation System (Ubuntu 20.04.4 LTS),
Python (3.9.13), PyTorch (1.13.1), CUDA (12.2), torch_geometry (2.5.3), Yosys-ABC (1.01). All algo-
rithms utilize the academic open-source Yosys-ABC to implement specialized heuristic directives
for circuitry, supported by the ASAP7 [45] technology library. The tool’s print_stats command is
used for technology mapping, resulting in a minimized logic circuit optimized for QoR.

4.1.2 Dataset. Logical optimization operators are all derived fromABC, and there are mainly four
kinds of optimization operators and their variants, totaling 13 kinds, as follows:


balance,

rewrite, rewrite -l, rewrite -z, rewrite -l -z,

refactor, refactor -l, refactor -z, refactor -l -z,

resub, resub -l, resub -z, resub -l -z.

The experiment employs two well-known datasets:
• EPFL [1] combinatorial Benchmark Suite, launched in 2015, aims to complement existing

benchmarking kits by focusing on native combinational logic benchmarks.This suite encom-
passes 20 circuits designed to test cases for contemporary logic optimization tools, catego-
rized into arithmetic, random, control, and circuits exceeding ten million gates.

• Open Core [8] crafted for ML-guided IC logic synthesis, is a substantial compilation based
on 29 open-source circuits, spanning a variety of functionalities including communication,
processors, and system controllers, suitable for developing and assessing the performance
of ML models in logic synthesis tasks.

4.2 AI Evaluation Model
4.2.1 Dataset Preprocessing. Both datasets share a set of 1500 recipes with a Gaussian distribution
of lengths averaging 10, capped at a maximum of 20. Of these recipes, 1000 recipes are allocated
(70% for training and 30% for validation), while the remaining 500 are utilized to evaluate the
generalization of the final model to unseen recipes. Fig. 9 offers an intuitive understanding of the
flowchart, facilitating the seamless generation and preprocessing of required data.

(1) Register Transfer Level (RTL) Synthesis: Yosys [41] translates RTL descriptions into
gate-level netlists, forming the basis for subsequent logic optimization and synthesis.

(2) Logic Optimization: Yosys and ABC [3] tools are used for logic synthesis, enhancing cir-
cuit performance and reducing resource consumption. Recipes are generated using random
strategies, including fixed-length and Gaussian-distributed random-length approaches.

(3) TechnologyMapping and Area Delay Assessment: ASAP7 [45] library collects area and
delay parameters for the technologically mapped AIG.

(4) Graph Processing: The AIG is converted to graphml format using Logic Factory [31] and
processed with networkx [15] for analysis and optimization.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiLO: A Predictive Framework for Logic Optimization Using Multi-Scale Cross-Attention Transformer XXX:17

Designs

design1

design2

designn

…

Yosys

libs

AIGs

aig1

aig2

aign

…

Yosys
abc

Logic
Factory

Synthesis
Optimization

…

recipes1recipes1recipes1

Graphs

graph1

graph2

graphn

…

AIGs & QoR

aig1aig1delays1

aig1aig1delays2aig1aig1aigs2

aig1aig1aigsn

…

Datasets

graph1 aig1aig1QoRs1

graph2 aig1aig1QoRs2

graphn aig1aig1QoRsn

…

Pytorch
networkx

recipes1recipes1recipes2

recipes1recipes1recipesn aig1aig1areasn aig1aig1delaysn

aigs1

recipes1recipes1recipes1

recipes1recipes1recipes2

recipes1recipes1recipesn

(1)
(2) (3)

(4)

(5)

…

aig1aig1areas1

aig1aig1areas2

Fig. 9. Data Preprocess Flowchart

Table 2. Training, Validation and Test splits

Split Open Core EPFL

Train i2c, spi, des3_area, ss_pcm, usb_phy, sasc, bar, max, sin, i2c, cavlc, ctrl, int2float, prioritywb_dma, simple_spi, dynamic_node

Valid aes, pci, ac97_ctrl, mem_ctrl, tv80, fpu router, sqrt, square, arbiter, adder

Test
wb_conmax, tinyRocket, aes_xcrypt,

div, log2, multiplier, mem_ctrl, voter, hypaes_secworks, jpeg, bp_be, ethernet, vga_lcd,
picosoc, dft, idft, fir, iir, sha256

(5) Data Alignment and Generation: PyTorch [32] and PyTorch Geometric [12] are used for
aligning and generating data for deep neural network learning, including graph structure,
logical features, and circuit characteristics.

The dataset partitioning, as detailed in Table 2, adheres to machine learning benchmarking stan-
dards by incorporating both Open Core and EPFL benchmark suites, exhibiting three critical char-
acteristics: (1) a scale-aware design where training sets focus on medium/small-scale circuits (e.g.,
i2c, spi) to optimize computational efficiency; (2) generalization validation through test sets that in-
clude large-scale circuits (e.g., tinyRocket, aes_xcrypt) specifically for evaluating cross-complexity
transferability; and (3) distribution equilibrium, where validation sets (e.g., aes, pci) maintain zero
overlap with test sets to guarantee unbiased evaluation.

4.2.2 Hyperparameter Setup. For the graph embedding part, an architecture utilizing a five-layer
GraphSage is employed for the AIG encoder, with a hidden embedding size of 128.This architecture
combinesmean pooling andmax pooling to generate individual AIG embeddings. For the synthesis
recipe embedding part, a four-layer self-attention Transformer is implemented, each layer having
a hidden size of 128. In the multi-scale cross-attention Transformer, patch embeddings are set to
sizes of 64 and 256, respectively. Two MLPs are used to map the recipe embeddings to match the

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:18 Ye Cai, Rui Wang, Liwei Ni, Miao Liu, Xingyu Meng, Xiaoze Lin, Junfeng Liu, Biwei Xie, and Xingquan Li

(a) core area MAPE (b) core delay MAPE (c) EPFL area MAPE (d) EPFL delay MAPE

OpenABC GNN+Transformer LOSTIN GNN-H CrossLO

Fig. 10. “Seen IC, Unseen Recipes” Comparative Results of MAPE

(a) core area 𝜌 (b) core delay 𝜌 (c) EPFL area 𝜌 (d) EPFL delay 𝜌

OpenABC GNN+Transformer LOSTIN GNN-H CrossLO

Fig. 11. “Seen IC, Unseen Recipes” Comparative Results of Spearman Rank Correlation Coefficient

patch size and alignment before being input into the cross-attention Transformer. The learning
rate is set to 0.0001, the batch size is set to 32, and “Adam” is set as the optimizer; the L1Loss is
used for the loss function.

This model employs two evaluation metrics: the Mean Absolute Percentage Error (MAPE) and
Spearman rank correlation coefficient [27]:

MAPE =
100%
𝑛

𝑛∑
𝑖=1

����𝑦𝑖 − 𝑦𝑖𝑦𝑖

���� (23)

𝜌 = 1 −
6
∑
𝑑2𝑖

𝑛 (𝑛2 − 1) (24)

where 𝑛 represents the total number of evaluation data points,𝑦𝑖 denotes the predicted values, and
𝑦𝑖 indicates the actual values, 𝑑𝑖 is the difference in rank between the predicted and actual values.

4.2.3 Ablation Study.

(1) Seen IC, Unseen Recipes. As shown in Table 3, the prediction accuracy of the CrossLOmodel
for the two indicators of area and delay in the two data sets increases by 42.52% on average,
and the Spearman rank correlation coefficient increases by 176.66%. Compared with the
method of GNN+Transformer, which does not employ the multi-scale cross-attention Trans-
former, the prediction accuracy is improved by an average of 28.02% across the two datasets,
while the Spearman rank correlation coefficient is enhanced by an average of 107.69%. Fig. 10

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiLO: A Predictive Framework for Logic Optimization Using Multi-Scale Cross-Attention Transformer XXX:19

Table 3. Comparison of QoR Prediction Results under Different Scenarios

Scenario Methods

Open Core EPFL

area delay area delay

MAPE 𝜌 MAPE 𝜌 MAPE 𝜌 MAPE 𝜌

Se
en

IC
U
ns

ee
n

R
ec

ip
es OpenABC [8] (Baseline) 3.55% 34.35% 4.35% 16.25% 6.27% 19.52% 6.78% 12.60%

LOSTIN [42] 3.55% 42.64% 3.59% 31.36% 5.65% 20.55% 4.85% 23.70%
GNN-H [43] 3.59% 44.35% 3.65% 32.85% 5.65% 24.25% 5.07% 37.11%

GNN+Transformer [46] 3.61% 33.17% 3.66% 23.14% 6.15% 19.60% 5.29% 27.02%
CrossLO 2.96% 54.70% 2.97% 50.99% 4.15% 55.32% 4.45% 44.12%

CrossLO vs Baseline 20.14% 59.25% 46.45% 213.80% 51.10% 183.37% 52.38% 250.20%

U
ns

ee
n

IC
Se

en
R
ec

ip
es OpenABC [8] (Baseline) 4.22% 19.74% 9.96% 19.28% 5.47% 11.77% 2.22% 18.82%

LOSTIN [42] 3.70% 2.71% 8.75% 14.07% 3.18% 3.45% 1.76% 3.58%
GNN-H [43] 3.37% 35.43% 8.21% 37.22% 3.30% 23.06% 1.67% 29.93%

GNN+Transformer [46] 4.06% 10.43% 8.88% 24.43% 3.79% 13.43% 1.70% 23.08%
CrossLO 3.47% 41.05% 8.50% 30.69% 4.10% 27.49% 1.94% 26.86%

CrossLO vs Baseline 21.63% 107.97% 17.21% 59.18% 33.46% 133.63% 14.78% 42.76%

U
ns

ee
n

IC
an

d
R
ec

ip
es

OpenABC [8] (Baseline) 4.24% 20.58% 10.04% 13.86% 4.50% 14.44% 1.96% 17.22%
LOSTIN [42] 3.65% 5.04% 8.77% 12.50% 3.52% 4.93% 1.91% 14.62%
GNN-H [43] 3.31% 34.64% 8.50% 32.36% 3.39% 20.70% 1.89% 21.07%

GNN+Transformer [46] 4.07% 10.64% 9.35% 14.47% 3.89% 8.19% 1.93% 13.13%
CrossLO 3.41% 39.77% 8.00% 38.16% 3.86% 30.96% 1.87% 21.94%

CrossLO vs Baseline 24.32% 93.24% 25.61% 175.30% 16.69% 114.47% 5.19% 27.42%

Table 4. The Information Related to the Best Test Loss Obtained during the Training of Various Models

Model Epoch Time(h) MAE Loss Model Epoch Time(h) MAE Loss

Only Concat 56 0.234 0.838 Multi Scale 64-128 293 5.241 0.463
Single Scale 64 212 2.380 0.635 Multi Scale 64-256 188 3.017 0.474
Single Scale 128 201 2.310 0.593 Multi Scale 64-512 133 2.132 0.489
Single Scale 256 299 2.748 0.619 Multi Scale 128-256 245 4.261 0.476
Single Scale 512 288 2.637 0.597 Multi Scale 128-512 159 2.836 0.481

Multi Scale 256-512 114 1.810 0.487

and Fig. 11 present detailed comparisons of the prediction performance of different methods
in terms of MAPE and Spearman correlation coefficients.

(2) Unseen IC, Seen Recipes. CrossLO achieves a 21.63% improvement in area prediction in the
Open Core dataset and a 33. 46% improvement in the EPFL dataset compared to the baseline
OpenABC model. For delay prediction, CrossLO improves by 17. 21% and 14. 78% in the
respective datasets.

(3) Unseen IC, Unseen Recipes. CrossLO maintains its superiority, achieving a 24.32% improve-
ment in area prediction in the Open Core dataset and a 16. 69% improvement in the EPFL
dataset. For delay prediction, the improvements are 25.61% and 5.19%.

Fig. 12 and Table 4 present the training loss curves and time information formodels with various
configurations, including models with only concatenated graph and recipe embeddings, single-
scale and multi-scale models, as well as models with different hyper parameters. By comparing
the training and testing loss curves of different models, as well as the optimal testing loss data,
the effectiveness of the multi-scale approach for this task is clearly demonstrated. Relative to the

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:20 Ye Cai, Rui Wang, Liwei Ni, Miao Liu, Xingyu Meng, Xiaoze Lin, Junfeng Liu, Biwei Xie, and Xingquan Li

0 50 100 150 200 250 300
Epoch

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
L

os
s

(a) Train Loss

0 50 100 150 200 250 300
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Te
st

 L
os

s

Only Concat
Single Scale 64
Multi Scale 64-128
Multi Scale 64-256
Multi Scale 64-512
Single Scale 128
Multi Scale 128-256
Multi Scale 128-512
Single Scale 256
Multi Scale 256-512
Single Scale 512

(b) Test Loss
0 50 100 150 200 250 300

Epoch

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Te
st

 L
os

s

Only Concat
Single Scale 64
Multi Scale 64-128
Multi Scale 64-256
Multi Scale 64-512
Single Scale 128
Multi Scale 128-256
Multi Scale 128-512
Single Scale 256
Multi Scale 256-512
Single Scale 512

(c) Label

Fig. 12. Comparison of Loss of Various Models. It includes simple concatenation of Graph embedding and
Recipe embedding, single scale and multi scale.

single-scale model and the model with only concatenation, the multi-scale model achieves lower
loss values during both training and testing, exhibiting superior generalization ability and training
efficiency. This indicates that the multi-scale approach can more effectively capture feature infor-
mation at different scales, thereby enhancing the model understanding and predictive capabilities.

In summary, these results demonstrate CrossLO strong generalization ability, which is attributed
to its innovative multi-scale cross-attention Transformer that enables deeper understanding and
capture of complex features and patterns in IC designs. However, CrossLO under performs GNN-
H and LOSTIN in some specific metrics. For instance, in the scenario “Seen Recipes, Unseen IC”
, GNN-H and LOSTIN achieve delay prediction accuracies 8.21% and 8.75% higher than CrossLO
on the Open Core dataset. This may be due to the significant impact of the IC graph structure on
CrossLO performance. GNN-H and LOSTIN might have certain advantages in delay prediction for
specific IC types due to their unique graph neural network architectures or training strategies.This
finding offers valuable insights for our future research. We plan to further investigate CrossLO
architecture and training algorithms to achieve comprehensive performance improvements and
maintain its leading position in logic optimization QoR prediction.

4.2.4 Runtime comparison. In terms of efficiency, CrossLO has also achieved remarkable results.
Table 5 shows a comparison of evaluation 500 recipes time between Yosys-ABC and deep learning
neural networks in part of the designs. While traditional EDA tools take an average of 51.99 min-
utes to process 500 recipes, CrossLO reduces this time to 11.04 seconds, a time of 282.56× faster.
This increase in efficiency reduces thewaiting time, and provides the possibility for large-scale data
processing. Therefore, CrossLO has significant potential for QoR prediction in deep learning neu-
ral networks. However, compared with existing methods such as OpenABC, GNN+Transformer,
LOSTIN, and GNN-H, CrossLO exhibits certain time-to-consumption differences. These methods,
which employ simpler graph encoding and recipe encoding through addition or concatenation,
may be faster. In contrast, the multi-scale cross-attention Transformer in CrossLO, though compu-
tationally more complex, enables deeper exploration and fusion of IC graph structure and recipe
information relationships, significantly boosting prediction performance. Thus, a modest trade-off
in computational efficiency for CrossLO is justified and it shows great potential in QoR prediction
among deep learning neural networks.

4.2.5 Ranking comparison. The primary objective of this part of the experiment is to assess the
effectiveness of the evaluation method in ranking the quality of optimized recipe solutions in

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiLO: A Predictive Framework for Logic Optimization Using Multi-Scale Cross-Attention Transformer XXX:21

Table 5. Evaluation 500 Recipes Time for Different Methods: PI, PO, AND are the size of circuit design spec-
ifications. Yosys-ABC evaluation time unit is minute, and other AI methods evaluation time unit is second.

Designs PI PO AND Yosys-ABC(m) OpenABC [8] LOSTIN [42] GNN-H [43] GNN+Transformer [46] CrossLO

ctrl 7 26 174 6.56 0.55 0.52 0.54 0.65 2.23
router 60 30 257 6.70 0.72 0.86 0.54 0.48 2.48
int2float 11 7 260 6.62 0.57 0.65 0.69 0.47 2.40
cavlc 10 11 693 7.04 0.71 0.62 0.61 0.59 2.17
priority 128 8 978 7.10 0.75 0.81 0.66 0.67 2.67
adder 256 129 1020 7.07 4.45 3.89 6.44 3.34 3.38
i2c 147 142 1342 7.42 0.86 0.97 0.75 0.84 2.90
max 512 130 2865 9.49 1.46 1.15 1.10 1.35 4.13
bar 135 128 3336 8.47 1.70 1.39 1.18 1.47 4.50
sum 24 25 5416 16.51 1.84 1.57 1.51 2.01 4.09
arbiter 256 129 11839 27.53 3.43 2.47 2.74 4.05 6.23
voter 1001 1 13758 21.90 3.94 3.11 3.12 4.48 6.71
square 64 128 18484 34.41 5.29 3.80 3.61 5.75 8.26
sqrt 128 64 24618 56.10 6.00 4.41 4.47 7.24 11.79
multiplier 128 128 27062 47.25 6.64 5.12 4.85 8.13 11.34
log2 32 32 32060 71.08 7.88 6.26 6.18 9.72 12.34
mem_ctrl 1204 1231 46836 52.40 11.71 8.28 8.51 14.02 19.61
div 128 128 57247 55.51 13.70 10.32 10.12 16.83 33.46
hyp 256 128 214335 538.67 51.35 35.96 35.94 57.39 69.07

Mean 236 137 24346 51.99 6.50 4.85 4.92 7.34 11.04

logic comprehensive optimization, and to explore its feasibility in evaluating the rank of optimized
recipes under conditions of similar prediction accuracy.

The training and test datasets used in this experiment are derived from the EPFL QoR predic-
tion dataset. We choose the LOSTIN method as the benchmark for comparison because it has high
prediction accuracy but relatively low Spearman rank correlation coefficient.The focus is on evalu-
ating the ranking of 500 recipes without prior exposure to the recipes and evaluating the accuracy.
The accuracy metric acc is defined as:

acc =
|𝑆true ∩ 𝑆pred |

𝑁
(25)

where: 𝑆true is the set of true top 10% recipes, 𝑆pred is the set of predicted top 10% recipes, 𝑁 is
the total number of recipes (in this case, 𝑁 = 500), | · | denotes the cardinality of a set. This
accuracy is used to verify the effectiveness and feasibility of the AI evaluation. The experimental
process included training LOSTIN and CrossLOmodels to predict area and delay.The area achieved
about 6% MAPE, and Spearman correlation coefficients are 20.15% and 40.63%, respectively. Delay
predicted that MAPE is about 5%, and Spearman’s correlation coefficients are 22.94% and 37.80%,
respectively. We evaluate recipes using these two methods on five random samples with similar
prediction accuracy, determine their QoR order, and predict the average accuracy of the top 10%
QoR recipe relative to the true top 10%.

Fig. 13 visualization results show that demonstrate that under the premise of comparable pre-
dictive accuracy between the two models, the CrossLO approach outperforms in the accuracy
of ranking recipes for area, delay, and QoR metrics. Specifically, the ranking accuracy rates for
CrossLO on these metrics are 32.04%, 28.62%, and 33.15%, respectively, which represent a signifi-
cant improvement over the LOSTIN rates of 21.80%, 18.14%, and 23.06%. When CrossLO is trained
to its optimal state, its accuracy in ranking the top 10% of optimization recipes for QoR reaches
40.46%. These findings confirm the efficacy of the evaluation method in sorting the quality of so-
lutions in logic synthesis optimization and demonstrate that the evaluation method can maintain
the ranking of optimization recipes even when there are biases in predictive accuracy.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:22 Ye Cai, Rui Wang, Liwei Ni, Miao Liu, Xingyu Meng, Xiaoze Lin, Junfeng Liu, Biwei Xie, and Xingquan Li

ad
der bar max sin i2c

ca
vlc ctr

l

int2f
loa

t

prio
rit

y
rou

ter
mea

n
0

10

20

30

40

50

A
C

C
(%

)

34.0

22.0

28.0

12.0

52.0

40.0

26.0 26.0

52.0

28.0

32.04

LOSTIN
CrossLO

(a) area accuracy

ad
der bar max sin i2c

ca
vlc ctr

l

int2f
loa

t

prio
rit

y
rou

ter
mea

n
0

10

20

30

40

50

A
C

C
(%

)

14.0

32.0 32.0

44.0

28.0

24.0

16.0

10.0

32.0

54.0

28.62

LOSTIN
CrossLO

(b) delay accuracy

ad
der bar max sin i2c

ca
vlc ctr

l

int2f
loa

t

prio
rit

y
rou

ter
mea

n
0

10

20

30

40

50

A
C

C
(%

)

34.0

26.0

36.0

12.0

48.0
46.0

26.0

18.0

52.0

34.0 33.15

LOSTIN
CrossLO

(c) QoR accuracy

Fig. 13. Evaluation of Top 10% Excellent Recipe Accuracy

4.3 Logic Optimization Exploration
4.3.1 Configuration. This experiment evaluates the AiLO method, comparing its performance
against prevalent methodologies. Each randomized seed experiment is repeated 5 times to ensure
the reliability of the results. It consists of three primary modes:

• Limit 100 recipes: A comparison of exploration effects under the Yosys-ABC evaluation
with 100 recipes, assessing the logic optimization capabilities of the AiLO model with mini-
mal reliance on traditional EDA tools.

• Limit 5 hours: An evaluation of optimization effects within a 5-hour exploration window
to gauge the logic optimization efficiency of AiLO model.

• Different AI evaluation modules in AiLO: An assessment of the impact of different AI
evaluation modules on AiLO by comparing exploration outcomes under the same constraint
of 100 recipes.

We randomly select 9 circuits in EPFL benchmark suite, which have different gate sizes, with
gate spans ranging from 1,000 nodes to more than 200,000 nodes. Resyn2 is chosen as the bench-
mark recipe, with the recipe length set to match Resyn2 ten optimization operators. During the
exploration process, the optimal recipe from all tested recipes is recorded, and its QoR is considered
the final outcome of the experiment. In addition, the training set used by CrossLO in the AI evalu-
ation module is consistent with the EPFL dataset in the QoR prediction experiment. When testing
the impact of different AI evaluationmodules on the AiLO framework, we choose to combine them
with the heuristic algorithm NSGA-II. Because heuristic NSGA-II has less search disturbance than
RL and Bayesian optimization, it reduces the impact of search algorithms on logic optimization
exploration results. Additionally, NSGA-II relies more on high-quality solutions during iteration,
better demonstrating the effectiveness of AI evaluation modules.

The details of the mainstream methodologies are as follows:
• DRiLLS [18]: We conduct DRiLLS, a classic reinforcement learning (RL) method. Given that

RL strategies rely on immediate feedback, we extend the Yosys-ABC testing conditions to
1000 iterations and optimize the reward mechanism to align with the QoR objectives.

• NSGA-II: NSGA-II offers significant benefits in terms of efficiency, variety, flexibility and
proven performance.

• BOiLS [13]: The algorithm demonstrated exceptional performance with a reduced number
of circuit evaluations. We assess the performance of the AiLO recipe exploration through 20
random searches and 80 kernel-tuning searches.

• Yang et al. [47]: The method integrates RL with GINE and LSTM to explore logic optimiza-
tion as a reference for QoR optimization performance.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiLO: A Predictive Framework for Logic Optimization Using Multi-Scale Cross-Attention Transformer XXX:23

Table 6. Limit 100 Recipes QoR Improvement (in %) Comparison: The main techniques used in the method
are marked under the method, and the running time is measured in minutes.★ mark the first place, † mark
the second place.

Methods index priority i2c max voter square multiplier log2 mem_ctrl hyp Mean

Resyn2 area 632.68 837.77 2848.55 13855.36 16210.02 22669.38 26929.54 31503.63 211090.90 -
(Baseline) delay 2076.20 164.74 2083.68 638.00 2520.69 2677.72 3725.86 1041.40 176561.08 -

DRiLLS [18]
(RL)

area 458.45 798.95 2146.11 11042.59 14836.99 21780.40 26203.02 29104.49 201944.63 -
delay 929.46 162.24 2117.49 688.83 2539.33 2681.53 3747.92 992.21 176801.92 -
QoR 82.77 6.15 23.04 12.33 7.73 3.78 2.11 12.34 4.20† 17.16
time 28.11 31.31 28.81 84.44 141.17 165.68 250.92 262.24 1958.73 327.94

BOiLS [13]
(BO)

area 404.85 796.92 2215.18 10987.76 14822.00 21580.75 26087.98 28074.80 202775.50 -
delay 885.36 150.80 2070.17 672.20 2541.28 2677.98 3729.65 964.79 176699.62 -
QoR 93.37† 13.34† 22.88 15.34 7.75 4.79† 3.02 18.24 3.86 20.29
time 466.86 474.75 476.17 518.39 532.36 556.65 564.23 575.73 632.93 533.12

NSGA-II
(HA)

area 451.55 812.31 2251.78 11341.17 15785.72 21782.95 26308.24 29308.02 202519.72 -
delay 903.66 149.83 2096.09 621.80 2265.05 2677.63 3705.36 939.29 176455.23 -
QoR 85.10 10.74 20.35 20.68 12.76 3.91 2.86 16.77 4.12 19.70
time 0.99 2.89 2.36 1.98 2.98 4.83 6.95 21.52 46.76 10.14

Yang et al. [47]
(GNN + LSTM + RL)

area 437.24 810.27 2514.86 11801.97 15979.51 21739.22 26255.65 29398.46 203584.98 -
delay 886.36 151.00 1865.55 611.06 2289.24 2677.75 3711.34 945.48 176760.41 -
QoR 88.20 11.62 22.18 19.04 10.60 4.10 2.89 15.89 3.44 19.78
time 34.38 41.25 71.57 205.11 379.69 546.74 647.72 970.09 6258.37 1017.21

DRiLLS+
(CrossLO + RL)

area 441.15 816.74 2151.73 11163.47 15737.40 21709.95 26113.06 29364.24 202257.88 -
delay 907.38 150.50 2072.92 625.27 2253.93 2678.03 3715.13 907.49 176805.45 -
QoR 86.57 11.15 24.98† 21.42 13.50 4.22 3.32† 19.65† 4.05 20.98
time 31.17 35.37 37.82 92.53 113.29 147.43 213.09 211.66 1220.87 233.69

BOiLS+
(CrossLO + BO)

area 403.23 797.51 2470.05 11705.43 15697 21297 26026.56 28641.33 202157.53 -
delay 886.36 150.5 1813.46 600.15 2246.67 2678.9 3708.97 921.78 176821.98 -
QoR 93.57★ 13.45★ 26.26★ 21.45† 14.04★ 6.01★ 3.81★ 20.57★ 4.08 22.51★
time 459.18 481.38 478.55 517.83 537.08 538.35 572.83 570.83 628.72 531.64

NSGA-II+
(CrossLO + HA)

area 399.74 814.16 2208.12 11327.268 15671.89 21672.338 26184.8 28483.8 198301.88 -
delay 906.42 149.2 2072.92 616.158 2258.97 2677.728 3706.71 938.825 176792.06 -
QoR 93.16 12.25 23.00 21.67★ 13.70† 4.40 3.28 19.44 5.93★ 21.87†
time 1.02 3.19 2.76 2.32 3.54 5.28 7.53 23.01 52.09 11.19

• DRiLLS+,NSGA-II+, BOiLS+:We integrate theAI evaluationmodule to screen high-quality
recipes and guide the original exploration algorithm. We examine the performance of the
original algorithm without the integrated AI evaluation module to assess the impact and
efficacy of AiLO on algorithmic performance.

4.3.2 Comparison 1: Limitation of 100 recipes. Fig. 14 illustrates the QoR improvement curves for
various methods across the optimization exploration process. Table 6 demonstrates that AiLO sig-
nificantly enhances the efficiency of selecting optimal recipes for IC designs. Even under con-
strained computational resources, this hybrid algorithm effectively searches for optimal solutions.
Algorithms with integrated AI evaluation demonstrate substantial improvements over their origi-
nal counterparts. Compared to DRiLLS, NSGA-II, and BOiLS without AI evaluation modules, per-
formance enhancements of 22.29%, 11.01%, and 10.96% are achieved, respectively, with an average
improvement of 14.75%.

In terms of time efficiency, the integration of CrossLO results in nearly negligible additional
evaluation time. For designs with more than 10,000 nodes, BOiLS runs for an average of 9 hours,
while NSGA-II+ runs for an average of 10 minutes. In addition, as the number of nodes decreases,
AiLO further reduces the run-time ratio of the Yosys-ABC tool. For designs with fewer nodes such
as i2c, max and priority, the NSGA+ running time is 1-3 minutes, while the Bayesian optimization
of BOiLS still consumes a lot of time, reaching 7-8 hours. NSGA-II+ saves about 200 times to
achieve similar or even better QoR improvements than BOiLS. CrossLO supports the evaluation of
different recipe lengths, i.e., single ormulti-step QoR prediction, whichmakes the AiLO framework

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:24 Ye Cai, Rui Wang, Liwei Ni, Miao Liu, Xingyu Meng, Xiaoze Lin, Junfeng Liu, Biwei Xie, and Xingquan Li

0 20 40 60 80 100
Iterations

5

0

5

10

Q
oR

 Im
pr

ov
em

en
t(

%
)

DRiLLS
NSGA-II
BOiLS
Yang et al.
DRiLLS+
NSGA-II+
BOiLS+

(a) i2c

0 20 40 60 80 100
Iterations

0

5

10

15

20

Q
oR

 Im
pr

ov
em

en
t(

%
)

DRiLLS
NSGA-II
BOiLS
Yang et al.
DRiLLS+
NSGA-II+
BOiLS+

(b) voter

0 20 40 60 80 100
Iterations

10

5

0

5

10

15

20

Q
oR

 Im
pr

ov
em

en
t(

%
)

DRiLLS
NSGA-II
BOiLS
Yang et al.
DRiLLS+
NSGA-II+
BOiLS+

(c) mem_ctrl

0 20 40 60 80 100
Iterations

1

2

3

4

5

6

Q
oR

 Im
pr

ov
em

en
t(

%
)

DRiLLS
NSGA-II
BOiLS
Yang et al.
DRiLLS+
NSGA-II+
BOiLS+

(d) hyp

Fig. 14. QoR Improvement Figures for Some ICs under Limitation of 100 Recipes

Table 7. Limit 5 Hours QoR Improvement (in %) Comparison:★mark the first place, † mark the second place.

Methods index priority i2c max voter square multiplier log2 mem_ctrl hyp Mean

Resyn2 area 632.68 837.77 2848.55 13855.36 16210.02 22669.38 26929.54 31503.63 211090.90 -
(Baseline) delay 2076.20 164.74 2083.68 638.00 2520.69 2677.72 3725.86 1041.40 176561.08 -

DRiLLS [18]
(RL)

area 411.38 831.5 2135.72 11089.45 15689.98 21618.67 26472.58 28788.16 201944.63 -
delay 906.42 149.2 2148.33 631.02 2270.29 2679.09 3702.09 962.72 176801.92 -
QoR 91.32 10.18 21.92 21.06 13.14 4.58 2.33 16.17 4.20 20.54

BOiLS [13]
(BO)

area 414.4 801.51 2135.72 11168.2 16085.49 21741.21 26255.65 28131 202799.67 -
delay 886.36 151 2148.33 620.47 2257.12 2676.58 3711.34 971.97 176394.19 -
QoR 91.81 12.67 21.92 22.14 11.22 4.14 2.89 17.37 4.02 20.91

NSGA-II
(HA)

area 395.96 792.7 2109.08 11397.47 15430.12 21422.14 25773.73 28077.49 201944.07 -
delay 886.36 151.12 2075.97 602.75 2259.61 2676.63 3710.33 935.63 176611.55 -
QoR 94.72† 13.65† 26.33 23.26 15.17† 5.54† 4.71† 21.03† 4.30† 23.22†

Yang et al. [47]
(GNN + LSTM + RL)

area 414.15 810.27 2289.44 11391.78 15950.83 21822.00 25942.26 28380.00 203817.07 -
delay 933.31 151.00 2030.61 620.28 2277.72 2678.61 3715.91 961.83 176793.62 -
QoR 89.59 11.62 22.17 20.56 11.24 3.70 3.93 17.56 3.31 20.41

DRiLLS+
(CrossLO + RL)

area 397.37 801.27 2154.66 11326.33 15676.88 21709.95 26113.06 29364.24 202257.88 -
delay 883.86 151.12 2075.97 621.17 2243.69 2678.03 3715.13 907.49 176805.45 -
QoR 94.62 12.62 24.73 20.89 14.28 4.22 3.32 19.65 4.05 22.04

BOiLS+
(CrossLO + BO)

area 401.12 792.27 2478.8 11705.43 15697 21660.5 25752.29 28641.33 202878.41 -
delay 906.42 152.13 1749.07 600.15 2246.67 2678.9 3713.71 921.78 176805.28 -
QoR 92.94 13.09 29.04† 21.45 14.04 4.41 4.70 20.57 3.75 22.66

NSGA-II+
(CrossLO + HA)

area 381.33 805.27 2397.77 11383.77 15421.32 21358.09 25698.05 28421.77 193980.48 -
delay 869.47 143.84 1737.09 596.19 2259.49 2676.41 3714.45 921.44 176873.47 -
QoR 97.85★ 16.57★ 32.46★ 24.39★ 15.23★ 5.83★ 4.88★ 21.30★ 7.93★ 25.13★

more flexible for the integration of RL, reducing the time cost of each state recognition and action
matching compared to the original RL. DRiLLS+ reduces time by 40.33% compared to DRiLLS under
the constraint of 100 recipes.

During five random exploration trials, instances where algorithmswith integrated AI evaluation
tools underperformed compared to original algorithms were observed. Notably, while the original
DRiLLS achieved an average improvement of 4.20%, the integrated version exhibited a negative op-
timization of 4.05%. The possible reason for this could be that the ability of the model to evaluate
recipes capabilities still needs enhancement, which is evident in the experimental results presented
in Section 4.2. Although CrossLO shows an improvement in Spearman Rank Correlation Coeffi-
cient for several ICs compares to other models, it is still at a relatively lower level, indicating that
there is significant room for improvement in deep learning predictions. Another possibility is that
high-quality solutions are not effectively fed back to the reinforcement learning agent, leading to
biased selection of optimization operators. Therefore, the interaction between high-quality solu-
tions and the original exploration algorithm may require further investigation to be strengthened.

4.3.3 Comparison 2: Limitation of 5 hours. Fig. 15 and Table 7 show the exploration results of dif-
ferent algorithms under the limited exploration time of five hours. It is clearly observed that the

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

AiLO: A Predictive Framework for Logic Optimization Using Multi-Scale Cross-Attention Transformer XXX:25

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Time (hours)

0

5

10

15

Q
oR

 Im
pr

ov
em

en
t(

%
)

DRiLLS
NSGA-II
BOiLS
Yang et al.
DRiLLS+
NSGA-II+
BOiLS+

(a) i2c

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Time (hours)

0

5

10

15

20

25

Q
oR

 Im
pr

ov
em

en
t(

%
)

DRiLLS
NSGA-II
BOiLS
Yang et al.
DRiLLS+
NSGA-II+
BOiLS+

(b) voter

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Time (hours)

0

5

10

15

20

Q
oR

 Im
pr

ov
em

en
t(

%
)

DRiLLS
NSGA-II
BOiLS
Yang et al.
DRiLLS+
NSGA-II+
BOiLS+

(c) mem_ctrl

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Time (hours)

0

2

4

6

8

Q
oR

 Im
pr

ov
em

en
t(

%
)

DRiLLS
NSGA-II
BOiLS
Yang et al.
DRiLLS+
NSGA-II+
BOiLS+

(d) hyp

Fig. 15. QoR Improvement Figure for Some ICs in 5 hours

Table 8. NSGA-II and Different AI Evaluation Models Combined with QoR Improvement(in %) Comparison

Models index priority i2c max voter square multiplier log2 mem_ctrl hyp Mean

NSGA-II
(Baseline)

area 451.55 812.31 2251.78 11341.17 15785.72 21782.95 26308.24 29308.02 202519.72 -
delay 903.66 149.83 2096.09 621.80 2265.05 2677.63 3705.36 939.29 176455.23 -
QoR 85.10 10.74 20.35 20.68 12.76 3.91 2.86 16.77 4.12 19.70

OpenABC [8]
(GCN + FC Layer)

area 411.20 820.48 2441.78 11337.72 15612.21 21819.06 26403.08 29272.77 202376.60 -
delay 900.77 149.20 1988.89 634.60 2263.68 2677.81 3707.60 932.15 176966.25 -
QoR 91.62 11.50 18.83 18.70 13.88 3.75 2.45 17.57 3.90 20.24

LOSTIN [42]
(GIN + LSTM)

area 412.86 814.32 2352.37 11567.49 15664.28 21745.50 26313.54 28919.37 202528.76 -
delay 909.53 149.20 1996.94 614.23 2260.55 2678.41 3706.63 934.67 176639.62 -
QoR 90.94 12.23 21.58 20.24 13.69 4.05 2.80 18.45 4.01 20.89

GNN-H [43]
(GIN+LSTM+Super-node)

area 413.89 804.50 2463.84 11419.37 15591.28 21765.51 26505.03 28926.18 202340.43 -
delay 896.41 149.84 1973.78 619.03 2256.25 2677.53 3705.35 919.52 176776.39 -
QoR 91.41 13.02 18.78 20.55 14.31 3.99 2.13 19.88 4.02 20.90

GNN+Transformer [46]
(GraphSage+Transformer)

area 437.07 812.07 2260.5 11656.11 15640.97 21722.51 26282.01 29233.06 202892.43 -
delay 868.76 150.5 2075.97 607.78 2258.97 2680.01 3706.05 933.47 176758.42 -
QoR 89.07 11.71 21.01 20.61 13.89 4.09 2.94 17.57 3.77 20.52

CrossLO area 399.74 814.16 2208.12 11327.27 15671.89 21672.34 26184.80 28483.80 198301.88 -
(GraphSage+Transformer delay 906.42 149.20 2072.92 616.16 2258.97 2677.73 3706.71 938.83 176792.06 -

+MSCAT) QoR 93.16 12.25 23.00 21.67 13.70 4.40 3.28 19.44 5.93 21.87

0 20 40 60 80 100
Iterations

2.5

0.0

2.5

5.0

7.5

10.0

12.5

Q
oR

 Im
pr

ov
em

en
t(

%
)

OpenABC
Yang et al.
LOSTIN
GNN-H
CrossLO

(a) i2c

0 20 40 60 80 100
Iterations

5

10

15

20

Q
oR

 Im
pr

ov
em

en
t(

%
)

OpenABC
Yang et al.
LOSTIN
GNN-H
CrossLO

(b) voter

0 20 40 60 80 100
Iterations

5

0

5

10

15

20

Q
oR

 Im
pr

ov
em

en
t(

%
)

OpenABC
Yang et al.
LOSTIN
GNN-H
CrossLO

(c) mem_ctrl

0 20 40 60 80 100
Iterations

0

2

4

6

Q
oR

 Im
pr

ov
em

en
t(

%
)

OpenABC
Yang et al.
LOSTIN
GNN-H
CrossLO

(d) hyp

Fig. 16. NSGA-II and Different AI Evaluation Models in QoR Exploration under Limitation of 100 Recipes

NSGA-II algorithm combined with AI evaluation has outstanding performance, which is signifi-
cantly superior to othermethods bymeans of high-quality solution population and fast exploration
iteration, and has an improvement of 8.49% compared with NSGA-II without AI evaluation. The
QoR improvement curve shows that NSGA-II+ effectively overcomes the performance limitations
of traditional NSGA-II, avoiding premature convergence to local optima. Conversely, DRiLLS is
hindered by excessive reliance on immediate EDA feedback, and BOiLS is slowed down by ker-
nel inference, both of which are time-consuming and detrimental to efficient logic optimization
exploration. This highlights the significant efficiency advantage of NSGA-II+.

4.3.4 Comparison 3: Different AI evaluation modules in AiLO. Table 8 and Fig. 16 show the ex-
perimental results of combining NSGA-II with various AI evaluation modules. The average QoR

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:26 Ye Cai, Rui Wang, Liwei Ni, Miao Liu, Xingyu Meng, Xiaoze Lin, Junfeng Liu, Biwei Xie, and Xingquan Li

results indicate that integrating AI evaluation modules into NSGA-II improves performance, prov-
ing the effectiveness of the AiLO framework. However, some ICs, like OpenABC and LOSTIN in
max, and OpenABC, GNN+Transformer in hyp, show negative optimization compared to NSGA-
II without AI evaluation. This suggests unreliable AI models might mislead the search algorithm.
Therefore, the AI evaluation component in the AiLO logic optimization framework is replaceable
and improves with better AI evaluation models.

In summary, reinforcement learning, heuristic algorithms, and Bayesian optimization algorithms
enhanced by AI evaluation modules have demonstrated excellent performance in selecting high-
quality recipes while reducing dependence on direct feedback from traditional EDA tools. This
enables effective pursuit of optimal solutions within limited computational resources. Moreover,
the high flexibility of the AiLO framework means that performance improvements in AI evalu-
ation modules and logic optimization exploration algorithms can directly or indirectly enhance
the overall performance of AiLO. New research can also directly utilize this framework to achieve
improvements in logic synthesis.

5 CONCLUSION
We develop CrossLO model, significantly enhancing the accuracy of QoR prediction. Experiments
confirm that even with a little deviation in prediction accuracy, AI evaluation module can still
effectively keep the rank of recipes. Based on this, we design AiLO framework to achieve pruning
and exploration. This approach reduces reliance on traditional EDA tools, intelligently guides the
exploration path, effectively improves the quality and speed, and realizes AI-enabled LO.

For future work, we are committed to further improving the generalization capabilities and pre-
dictive accuracy of the CrossLO model, with the goal of applying it to a broader range of design
cases. Additionally, we aim to explore its potential integration with existing EDA tools to achieve a
more efficient automated design process.These efforts are expected to inject new vitality into tech-
nological advancements in the EDA domain, providing a solid theoretical foundation and practical
guidance for both academia and industry.

REFERENCES
[1] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. 2015. The EPFL Combinational Benchmark

Suite. In Proceedings of the 24th International Workshop on Logic & Synthesis (IWLS).
[2] Armin Biere. 2007. The AIGER And-Inverter Graph (AIG) Format Version 20071012. Technical Report 07/1. Institute for

Formal Models and Verification, Johannes Kepler University.
[3] Robert Brayton and Alan Mishchenko. 2010. ABC: An Academic Industrial-strength Verification Tool. In Computer

Aided Verification: 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings 22. Springer,
24–40.

[4] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. 2017. Geometric Deep
Learning: Going beyond Euclidean data. IEEE Signal Processing Magazine 34, 4 (2017), 18–42. https://doi.org/10.1109/
MSP.2017.2693418

[5] Maxim Buzdalov and Anatoly Shalyto. 2014. A Provably Asymptotically Fast Version of The Generalized Jensen
Algorithm For Non-Dominated Sorting. 8672 (2014), 528–537.

[6] Chun-Fu Richard Chen,Quanfu Fan, and Rameswar Panda. 2021. CrossViT: Cross-AttentionMulti-Scale Vision Trans-
former for Image Classification. In Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV).
347–356.

[7] Animesh Basak Chowdhury, Marco Romanelli, Benjamin Tan, Ramesh Karri, and Siddharth Garg. 2024. Retrieval-
Guided Reinforcement Learning for Boolean Circuit Minimization. In Proceedings of the 12th International Conference
on Learning Representations (ICLR).

[8] Animesh Basak Chowdhury, Benjamin Tan, Ramesh Karri, and Siddharth Garg. 2021. OpenABC-D: A Large-Scale
Dataset For Machine Learning Guided Integrated Circuit Synthesis. arXiv preprint arXiv:2110.11292 (2021).

[9] KalyanmoyDeb, Amrit Pratap, Sameer Agarwal, and TAMTMeyarivan. 2002. A Fast and ElitistMultiobjective Genetic
Algorithm: NSGA-II. IEEE Transactions on evolutionary computation 6, 2 (2002), 182–197.

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1109/MSP.2017.2693418

AiLO: A Predictive Framework for Logic Optimization Using Multi-Scale Cross-Attention Transformer XXX:27

[10] Faezeh Faez, Raika Karimi, Yingxue Zhang, Xing Li, Lei Chen, Mingxuan Yuan, and Mahdi Biparva. 2025. MTLSO:
A Multi-Task Learning Approach for Logic Synthesis Optimization. In Proceedings of the 30th Asia and South Pacific
Design Automation Conference (ASPDAC). New York, NY, USA, 72–78.

[11] Chang Feng, Wenlong Lyu, Zhitang Chen, Junjie Ye, Mingxuan Yuan, and Jianye Hao. 2022. Batch Sequential Black-
Box Optimization with Embedding Alignment Cells for Logic Synthesis. In Proceedings of the 41st IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD). New York, NY, USA, Article 56, 9 pages.

[12] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning with PyTorch Geometric. arXiv preprint
arXiv:1903.02428 (2019).

[13] Antoine Grosnit, Cedric Malherbe, Rasul Tutunov, XingchenWan, Jun Wang, and Haitham Bou Ammar. 2022. BOiLS:
Bayesian Optimisation for Logic Synthesis. In Proceedings of 2022 Design, Automation & Test in Europe Conference &
Exhibition (DATE). 1193–1196.

[14] Winston Haaswijk, Edo Collins, Benoit Seguin, Mathias Soeken, Frédéric Kaplan, Sabine Süsstrunk, and Giovanni
De Micheli. 2018. Deep Learning for Logic Optimization Algorithms. In Proceedings of 2018 IEEE International Sympo-
sium on Circuits and Systems (ISCAS). 1–4.

[15] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring Network Structure, Dynamics, and Function
using NetworkX. In Proceedings of the 7th Python in Science Conference, Gaël Varoquaux, Travis Vaught, and Jarrod
Millman (Eds.). Pasadena, CA USA, 11 – 15.

[16] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation Learning on Large Graphs. In
Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS) (NIPS’17). Red Hook,
NY, USA, 1025–1035.

[17] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation 9, 8 (1997), 1735–
1780.

[18] Abdelrahman Hosny, Soheil Hashemi, Mohamed Shalan, and Sherief Reda. 2020. DRiLLS: Deep Reinforcement Learn-
ing for Logic Synthesis. In Proceedings of the 25th Asia and South Pacific Design Automation Conference (ASP-DAC).
581–586.

[19] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec. 2019. Strategies
for Pre-training Graph Neural Networks. arXiv preprint arXiv:1905.12265 (2019).

[20] Jie-Hong Roland Jiang and Srinivas Devadas. 2009. Logic Synthesis in a Nutshell. In Electronic Design Automation.
Elsevier, 299–404.

[21] Thomas N Kipf and Max Welling. 2016. Semi-Supervised Classification with Graph Convolutional Networks. arXiv
preprint arXiv:1609.02907 (2016).

[22] Rongjian Liang, Chia-Tung Ho, Anthony Agnesina, Wen-Hao Liu, and Haoxin Ren. 2024. ReLS: Retrieval Is Efficient
Knowledge Transfer For Logic Synthesis. In Proceedings of the 6th ACM/IEEE Symposium on Machine Learning for
CAD (MLCAD). 1–7.

[23] Gai Liu and Zhiru Zhang. 2019. PIMap: A Flexible Framework for Improving LUT-Based Technology Mapping via
Parallelized Iterative Optimization. ACM Transactions on Reconfigurable Technology and Systems 11, 4 (2019).

[24] Junfeng Liu, Liwei Ni, Lei Chen, Xing Li, Qinghua Zhao, Xingquan Li, and Shuai Ma. 2025. A Delay-driven Iterative
Technology Mapping Framework. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(2025).

[25] Junfeng Liu, Liwei Ni, Xingquan Li, Min Zhou, Lei Chen, Xing Li, Qinghua Zhao, and Shuai Ma. 2023. AiMap: Learning
to Improve Technology Mapping for ASICs via Delay Prediction. In Proceedings of IEEE International Conference on
Computer Design (ICCD). IEEE, 344–347.

[26] Yanbei Liu, Yu Zhao, Xiao Wang, Lei Geng, and Zhitao Xiao. 2023. Multi-Scale Subgraph Contrastive Learning. In
Proceedings of the 32nd International Joint Conference on Artificial Intelligence (IJCAI). 2215–2223.

[27] Thomas W. MacFarland and Jan M. Yates. 2016. Spearman’s Rank-Difference Coefficient of Correlation. Springer Inter-
national Publishing, Cham, 249–297.

[28] Łukasz Maziarka, Tomasz Danel, Sławomir Mucha, Krzysztof Rataj, Jacek Tabor, and Stanisław Jastrzębski. 2020. Mol-
ecule Attention Transformer. arXiv preprint arXiv:2002.08264 (2020).

[29] Giovanni De Micheli. 1994. Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher Education.
[30] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. 2006. DAG-aware AIG Rewriting a Fresh Look at Combi-

national Logic Synthesis. In Proceedings of the 43rd annual Design Automation Conference (DAC). 532–535.
[31] Liwei Ni, RuiWang, Miao Liu, XingyuMeng, Xiaoze Lin, Junfeng Liu, Guojie Luo, Zhufei Chu,Weikang Qian, Xiaoyan

Yang, Biwei Xie, Xingquan Li, and Huawei Li. 2025. OpenLS-DGF: An Adaptive Open-Source Dataset Generation
Framework for Machine Learning Tasks in Logic Synthesis. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2025), 1–1.

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

XXX:28 Ye Cai, Rui Wang, Liwei Ni, Miao Liu, Xingyu Meng, Xiaoze Lin, Junfeng Liu, Biwei Xie, and Xingquan Li

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. arXiv:1912.01703 [cs.LG]

[33] Tsutomu Sasao. 1993. Logic Synthesis and Optimization. Vol. 2. Springer.
[34] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. 2009. The Graph

Neural Network Model. IEEE Transactions on Neural Networks 20, 1 (2009), 61–80.
[35] Feng Shi, Chonghan Lee, Mohammad Khairul Bashar, Nikhil Shukla, Song-Chun Zhu, and Vijaykrishnan Narayanan.

2021. Transformer-based Machine Learning for Fast SAT Solvers and Logic Synthesis. arXiv preprint arXiv:2107.07116
(2021).

[36] Yundong Sun, Dongjie Zhu, Yansong Wang, Yansheng Fu, and Zhaoshuo Tian. 2025. GTC: GNN-Transformer co-
contrastive learning for self-supervised heterogeneous graph representation. Neural Networks 181 (2025), 106645.

[37] Eleonora Testa, Mathias Soeken, Luca Gaetano Amar, and Giovanni De Micheli. 2019. Logic Synthesis for Established
and Emerging Computing. Proc. IEEE 107, 1 (2019), 165–184.

[38] Luis H.M. Torres, Bernardete Ribeiro, and Joel P. Arrais. 2024. Multi-scale cross-attention transformer via graph
embeddings for few-shot molecular property prediction. Applied Soft Computing 153 (2024), 111268.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. 2017. Attention is All You Need. Advances in Neural Information Processing Systems 30 (2017).

[40] DhananiayaWijerathne, Zhaoying Li, Anuj Pathania, Tulika Mitra, and LotharThiele. 2021. HiMap: Fast and Scalable
High-Quality Mapping on CGRA via Hierarchical Abstraction. In Proceedings of 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE). 1192–1197.

[41] Clifford Wolf. 2016. Yosys open synthesis suite. (2016). https://yosyshq.net/yosys/
[42] Nan Wu, Jiwon Lee, Yuan Xie, and Cong Hao. 2022. LOSTIN: Logic Optimization via Spatio-Temporal Information

with Hybrid Graph Models. In Proceedings of the 33rd IEEE International Conference on Application-specific Systems,
Architectures and Processors (ASAP). 11–18.

[43] Nan Wu, Yuan Xie, and Cong Hao. 2022. AI-assisted Synthesis in Next Generation EDA: Promises, Challenges, and
Prospects. In Proceedings of the 40th IEEE International Conference on Computer Design (ICCD). 207–214.

[44] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful are Graph Neural Networks? arXiv
preprint arXiv:1810.00826 (2018).

[45] Xiaoqing Xu, Nishi Shah, Andrew Evans, Saurabh Sinha, Brian Cline, and Greg Yeric. 2017. Standard cell library
design and optimization methodology for ASAP7 PDK. In Proceedings of 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 999–1004.

[46] Chenghao Yang, ZhongdaWang, Yinshui Xia, and Zhufei Chu. 2022. The Prediction ofTheQuality of Results in Logic
Synthesis Using Transformer and Graph Neural Networks. arXiv preprint arXiv:2207.11437 (2022).

[47] Chenghao Yang, Yinshui Xia, Zhufei Chu, and Xiaojing Zha. 2022. Logic Synthesis Optimization Sequence Tuning
Using RL-Based LSTM and Graph Isomorphism Network. IEEE Transactions on Circuits and Systems II: Express Briefs
69, 8 (2022), 3600–3604.

[48] Cunxi Yu, Houping Xiao, and Giovanni De Micheli. 2018. Developing Synthesis Flows Without Human Knowledge.
In Proceedings of the 55th ACM/IEEE Design Automation Conference (DAC). 1–6.

[49] Jianyong Yuan, Peiyu Wang, Junjie Ye, Mingxuan Yuan, Jianye Hao, and Junchi Yan. 2023. EasySO: Exploration-
enhanced Reinforcement Learning for Logic Synthesis Sequence Optimization and a Comprehensive RL Environment.
In Proceedings of the 42nd IEEE/ACM International Conference on Computer Aided Design (ICCAD). 1–9.

[50] Peiyan Zhang, Yuchen Yan, Chaozhuo Li, Senzhang Wang, Xing Xie, and Sunghun Kim. 2023. Can Transformer and
GNN Help Each Other? arXiv preprint arXiv:2308.14355 (2023).

[51] Keren Zhu, Mingjie Liu, Hao Chen, Zheng Zhao, and David Z. Pan. 2020. Exploring Logic Optimizations with Re-
inforcement Learning and Graph Convolutional Network. In Proceedings of the 2nd ACM/IEEE Workshop on Machine
Learning for CAD (MLCAD). 145–150.

Received 14 January 2025; revised 17 May 2025; accepted 23 July 2025

ACM Trans. Des. Autom. Electron. Syst., Vol. XX, No. X, Article XXX. Publication date: XX 2025.

https://arxiv.org/abs/1912.01703
https://yosyshq.net/yosys/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Logic Synthesis
	2.2 Motivation
	2.3 Related Works

	3 AiLO Framework
	3.1 CrossLO Model
	3.2 AI Evaluation Module
	3.3 Explore Algorithm and AI Integration
	3.4 Analysis of Deep Learning Applications in Logic Optimization

	4 Experimental Results
	4.1 Setup
	4.2 AI Evaluation Model
	4.3 Logic Optimization Exploration

	5 Conclusion
	References

